Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T07:24:50.769Z Has data issue: false hasContentIssue false

Lanthanide (Eu3+, Tb3+) functionalized SBA-15 through modified hexafluoroacetylacetone linkage: Covalently bonding construction, physical characterization, and luminescent properties

Published online by Cambridge University Press:  04 March 2014

Ya-Juan Li*
Affiliation:
College of Science, Hebei University of Science and Technology, Shijiazhuang 050080, People's Republic of China
Xudong Yu
Affiliation:
College of Science, Hebei University of Science and Technology, Shijiazhuang 050080, People's Republic of China
Xiaojing Wang
Affiliation:
College of Science, Hebei University of Science and Technology, Shijiazhuang 050080, People's Republic of China
Minli Yang
Affiliation:
College of Science, Hebei University of Science and Technology, Shijiazhuang 050080, People's Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

New organic/inorganic mesoporous luminescent hybrid materials containing lanthanide (Eu, Tb) complexes chemically bonded to mesoporous SBA-15 [a kind of mesoporous silica with two-dimensional hexagonal (P6mm) structure] have been successfully synthesized by co-condensation of the modified hexafluoroacetylacetone (HFAASi) and tetraethoxysilane (TEOS) in the presence of Pluronic P123 surfactant as a template. The luminescent properties of these resulting mesoporous hybrid materials [denoted as Ln(HFAASi-SBA-15)3phen, Ln = Eu, Tb; phen = 1,10-phenanthroline] were characterized by Fourier transform infrared, small-angle powder x-ray diffraction, N2 adsorption measurements, transmission electron microscope, ultraviolet-visible diffuse reflection absorption spectra, and photoluminescent spectra, and the results exhibit that they all have uniformity in mesostructure and high surface area. Moreover, the mesoporous hybrid materials Eu(HFAASi-SBA-15)3phen and Tb(HFAASi-SBA-15)3phen exhibit the characteristic luminescence of Eu3+ and Tb3+, respectively, indicating that the effective intramolecular energy transfer between HFAASi and the lanthanide ions has been achieved.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Koeppen, C., Yamada, S., Jiang, G., Garito, A.F., and Dalton, L.R.: Rare-earth organic complexes for polymer optical fiber and waveguide amplifiers. J. Opt. Soc. Am. B: Opt. Phys. 14, 155 (1997).Google Scholar
Lehn, J.M.: Perspectives in supramolecular chemistry-from molecular recognition towards molecular information processing and self-organization. Angew. Chem. Int. Ed. Engl. 29, 1304 (1990).Google Scholar
McGehee, M.D., Bergstedt, T.B., Zhang, C., Saab, A.P., O'Regan, M.B., Bazan, G.C., Srdanov, V.I., and Heeger, A.J.: Narrow bandwidth luminescence from blends with energy transfer from semiconducting conjugated polymers to europium complexes. Adv. Mater. 11, 1349 (1999).Google Scholar
Kido, J. and Okamoto, Y.: Organo lanthanide metal complexes for electroluminescent materials. Chem. Rev. 102, 2357 (2002).CrossRefGoogle ScholarPubMed
Li, H.R., Lin, J., Zhang, H.J., Fu, L.S., Meng, Q.G., and Wang, S.B.: Preparation and luminescence properties of hybrid materials containing europium(III) complexes covalently bonded to a silica matrix. Chem. Mater. 14, 3651 (2002).Google Scholar
Carlos, L.D., Sá Ferreira, R.A., Pereira, R.N., Assuncao, M., and Bermudez, V.D.Z.: White-light emission of amine-functionalized organic/inorganic hybrids: Emitting centers and recombination mechanisms. J. Phys. Chem. B 108, 14924 (2004).Google Scholar
Zhang, D.J., Wang, X.M., Qiao, Z.A., Tang, D.H., Liu, Y.L., and Huo, Q.S.: White-light emission of amine-functionalized organic/inorganic hybrids: Emitting centers and recombination mechanisms. J. Phys. Chem. C 114, 12505 (2010).Google Scholar
Guo, X.M., Guo, H.D., Fu, L.S., Deng, R.P., Chen, W., Feng, J., Dang, S., and Zhang, H.J.: Synthesis, spectroscopic properties, and stabilities of ternary europium complex in SBA-15 and periodic mesoporous organosilica: A comparative study. J. Phys. Chem. C 113, 2603 (2009).Google Scholar
Zhao, D.Y., Sun, J.Y., Li, Q.Z., and Stucky, G.D.: Morphological control of highly ordered mesoporous silica SBA-15. Chem. Mater. 12, 275 (2000).Google Scholar
Madhugiri, S., Dalton, A., Gutierrez, J., Ferraris, J.P., and Balkus, K.J.: Electrospun MEH-PPV/SBA-15 composite nanofibers using a dual syringe method. J. Am. Chem. Soc. 125, 14531 (2003).Google Scholar
Peng, C.Y., Zhang, H.J., Yu, J.B., Meng, Q.G., Fu, L.S., Li, H.R., Sun, L.N., and Guo, X.M.: Synthesis, characterization, and luminescence properties of the ternary europium complex covalently bonded to mesoporous SBA-15. J. Phys. Chem. B 109, 15278 (2005).Google Scholar
Li, L.S., Zhang, Y., Yu, J.B., Peng, C.Y., and Zhang, H.J.: Ternary lanthanide (Er3+, Nd3+, Yb3+, Sm3+, Pr3+) complex-functionalized mesoporous SBA-15 materials that emit in the near-infrared range. J. Photochem. Photobiol., A 199, 57 (2008).Google Scholar
Peng, C.Y., Zhang, H.J., Meng, Q.G., Li, H.R., Yu, J.B., Guo, J.F., and Sun, L.N.: Synthesis and luminescence properties of SBA-15 functionalized with covalently bonded ternary europium complex. Inorg. Chem. Commun. 8, 440 (2005).CrossRefGoogle Scholar
Li, Y., Yan, B., and Yang, H.: Construction, characterization, and photoluminescence of mesoporous hybrids containing europium(III) complexes covalently bonded to SBA-15 directly functionalized by modified beta-diketone. J. Phys. Chem. C 112, 3959 (2008).CrossRefGoogle Scholar
Yan, B. and Li, Y.: Luminescent ternary inorganic-organic mesoporous hybrids Eu(TTASi-SBA -15)phen: Covalent linkage in TTA directly functionalized SBA-15. Dalton Trans. 39, 1480 (2010).Google Scholar
Li, Y.J. and Yan, B.: Lanthanide (Eu3+, Tb3+)/β-diketone modified mesoporous SBA-15/organic polymer hybrids: Chemically bonded construction, physical characterization, and photophysical properties. Inorg. Chem. 48, 8276 (2009).Google Scholar
Li, Y.J., Wang, L., and Yan, B.: Photoactive lanthanide hybrids covalently bonded to functionalized periodic mesoporous organosilica (PMO) by calix[4]arene derivative. J. Mater. Chem. 21, 1130 (2011).Google Scholar
Li, Y.J., Yan, B., and Li, Y.: Lanthanide (Eu3+, Tb3+) centered mesoporous hybrids with 1,3-diphenyl-1,3-propanepione covalently linking SBA-15 (SBA-16) and poly(methylacrylic acid). Chem. Asian J. 5, 1642 (2010).CrossRefGoogle Scholar
Wang, C. and Yan, B.: Rare earth (Eu3+, Tb3+) centered composite gels Si-O-M (M = B, Ti) through hexafluoroacetyl-acetone building block: Sol-gel preparation, characterization and photoluminescence. Mater. Res. Bull. 46, 2515 (2011).Google Scholar
Yu, M., Lin, J., and Fang, J.: Silica spheres coated with YVO4: Eu3+ layers via sol–gel process: A simple method to obtain spherical core–shell phosphors. Chem. Mater. 17, 1783 (2005).Google Scholar
Yu, M., Lin, J., Wang, Z., Fu, J., Wang, S., Zhang, H.J., and Han, Y.C.: Fabrication, patterning, and optical properties of nanocrystalline YVO4: A (A = Eu3+, Dy3+, Sm3+, Er3+) phosphor films via sol–gel soft lithography. Chem. Mater. 14, 2224 (2002).Google Scholar
Li, Y.J., Yan, B., and Li, Y.: Luminescent lanthanide (Eu3+, Tb3+) ternary mesoporous hybrids with functionalized β-diketones (TTA, DBM) covalently linking SBA-15 and 2,2′-bipyridine (bpy). Microporous Mesoporous Mater. 131, 82 (2010).Google Scholar
Yan, B., Wang, J.W., and Li, Y.J.: Metallic inorganic/organic hybrid system through functionalized Schiff-base linkage: Molecular assembly, characterization and luminescence. J. Alloys Compd. 509, 9240 (2011).Google Scholar
Kruk, M. and Jaroniec, M.: Gas adsorption characterization of ordered organic-inorganic nanocomposite materials. Chem. Mater. 13, 3169 (2001).Google Scholar
Zhang, W.H., Lu, X.B., Xiu, J.H., Hua, Z.L., Zhang, L.X., Robertson, M., Shi, J.L., Yan, D.S., and Holmes, J.D.: Synthesis and characterization of bifunctionalized ordered mesoporous materials. Adv. Funct. Mater. 14, 544 (2004).CrossRefGoogle Scholar
Kong, L.L., Yan, B., and Li, Y.: Hybrid materials of SBA-15 functionalized by Tb3+ complexes of modified acetylacetone: Covalently bonded assembly and photoluminescence. J. Alloys Compd. 481, 549 (2009).Google Scholar
Fan, W.Q., Feng, J., Song, S.Y., Lei, Y.Q., Zheng, G.L., and Zhang, H.J.: Synthesis and optical properties of europium-complex-doped inorganic/organic hybrid materials built from oxo–hydroxo organotin nano building blocks. Chem. Eur. J. 16, 1903 (2010).CrossRefGoogle ScholarPubMed
Miranda, J.P., Zukerman-Schpector, J., Isolani, P.C., Vicentini, G., and Zinner, L.B.: Synthesis and structure of lanthanide picrates with trans-1,3-dithiane-1,3-dioxide. J. Alloys Compd. 344, 141 (2002).CrossRefGoogle Scholar
Guillet, E., Imbert, D., Scopelliti, R., and Bünzli, J.C.G.: Tuning the emission color of europium-containing ionic liquid-crystalline phases. Chem. Mater. 16, 4063 (2004).CrossRefGoogle Scholar
Li, Y.J., Yan, B., and Wang, L.: Calix[4]arene derivative functionalized lanthanide (Eu, Tb) SBA-15 mesoporous hybrids with covalent bond: Assembly, characterization and photoluminescence. Dalton Trans. 40, 6722 (2011).Google Scholar
Binnemans, K., Lenaerts, P., Driesen, K., and Gorller-Walrand, C.: A luminescent tris(2-thenoyltrifluoroacetonato) europium(III) complex covalently linked to a 1,10-phenanthroline-functionalised sol-gel glass. J. Mater. Chem. 14, 191 (2004).CrossRefGoogle Scholar
Malta, O.L., Brito, H.F., Menezes, J.F.S., Silva, F.R.G.E., Alves, S., Farias, F.S., and DeAndrade, A.V.M.: Spectroscopic properties of a new light- converting device Eu(thenoyltrifluoroacetonate)3 2(dibenzyl Sulfoxide). A theoretical analysis based on structural data obtained from a sparkle model. J. Lumin. 75, 255 (1997).Google Scholar
Malta, O.L., DosSantos, M.A.C., Thompson, L.C., and Ito, N.K.: Intensity parameters of 4f-4f transitions in the Eu(dipivaloylmethanate)3 1,10-phenanthroline complex. J. Lumin. 69, 77 (1996).Google Scholar
Teotonio, E.E.S., Espynola, J.G.P., Brito, H.F., Malta, O.L., Oliveria, S.F., de Foria, D.L.A., and Izumi, C.M.S.: Influence of the N-[methylpyridyl]acetamide ligands on the photoluminescent properties of Eu(iii)-perchlorate complexes. Polyhedron 21, 1837 (2002).Google Scholar
Werts, M.H.V., Jukes, R.T.F., and Verhoeven, J.W.: The emission spectrum and the radiative lifetime of Eu3+ in luminescent lanthanide complexes. Phys. Chem. Chem. Phys. 4, 1542 (2002).Google Scholar
Carlos, L.D., Bermudez, V.D., Ferreira, R.A.S., Marques, L., and Assuncao, M.: Sol–gel derived urea cross-linked organically modified silicates. 2. Blue-light emission. Chem. Mater. 11, 581 (1999).Google Scholar
Lima, P.P., Nobre, S.S., Freire, R.O., Junior, S.A., Mafra, L., Ferreira, R.A.S., Pischel, U., Malta, O.L., and Carlos, L.D.: Energy transfer mechanisms in organic-inorganic hybrids incorporating europium(III): A quantitative assessment by light emission spectroscopy. J. Phys. Chem. C 111, 17627 (2007).Google Scholar