Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T01:08:40.916Z Has data issue: false hasContentIssue false

La2Hf2O7:Ti4+ ceramic scintillator for x-ray imaging

Published online by Cambridge University Press:  01 March 2005

Yaming Ji
Affiliation:
Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
Danyu Jiang
Affiliation:
Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
Jianlin Shi*
Affiliation:
Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Transparent ceramic scintillators of La2Hf2O7:Ti4+ were developed by a novel combustion synthesis method. The optical transmittance for a 1.0-mm-thick specimen is about 60% of the incident light, and the x-ray stopping power is also quiet high. The broad emission band centered at 475 nm originates from the oxide-Ti4+ charge-transfer transitions, which renders fast decay time on the order of 10 μs. The highest relative light output has reached about 1.5 times that of Bi4Ge3O12 (BGO) single crystal when excited by 120 kV x-rays.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Greskovich, C. and Duclos, S.: Ceramic scintillators. Annu. Rev. Mater. Sci. 27, 69 (1997).CrossRefGoogle Scholar
2.Steven, J., Duclos, A., Greskovich, D.C., Lyons, R.J., Vartuli, J.S., Hoffman, D.M., Riedner, R.J. and Lynch, M.J.: Development of the HiLightTM scintillator for computed tomography medical imaging. Nucl. Instrum. Methods A 505, 68 (2003).Google Scholar
3.van Loef, E.V.D., Dorenbos, P., van Eijk, C.W.E., Krämerb, K. and Güdel, H.U.: High-energy-resolution scintillator: Ce3+ activated LaCl3. Appl. Phys. Lett. 77, 1467 (2000).CrossRefGoogle Scholar
4.van Loef, E.V.D., Dorenbos, P., van Eijk, C.W.E., Krämerb, K. and Güdel, H.U.: High-energy-resolution scintillator: Ce3+ activated LaBr3. Appl. Phys. Lett. 79, 1573 (2001).CrossRefGoogle Scholar
5.Dorenbos, P., van Eijk, C.W.E., Bos, A.J.J. and Melcher, C.L.: Scintillation and thermoluminescence properties of Lu2SiO5:Ce fast scintillation crystals. J. Lumin. 60–61, 975 (1994).Google Scholar
6.Moszyski, M., Wolski, D., Ludziejewski, T., Kapusta, M., Lempicki, A., Brecher, C., Wiśniewski, D., Wojtowicz, A. J.: Properties of the new LuAP: Ce scintillator. Nucl. Instrum. Methods A 385, 123 (1997).CrossRefGoogle Scholar
7.Yukio, I., Hiromichi, Y., Minoru, Y., Hideji, F., Gyozo, T. and Hiroshi, T.: Hot isostatic pressed Gd2O2S:Pr,Ce,F translucent scintillator ceramics for x-ray computed tomography detectors. Jpn. J. Appl. Phys. 27, L1371 (1988).Google Scholar
8.Brixner, L.H.: Structural and luminescent properties of the Ln2Hf2O7-type rare earth hafnates. Mater. Res. Bull. 19, 143 (1984).CrossRefGoogle Scholar
9. Zuk: Method of making a translucent polycrystalline alumina. U.S. Patent No. 5,627,116 (1997).Google Scholar
10.Feng, T. and Shi, J. (unpublished, 2004).Google Scholar
11.Cheng, Q. and Shi, J. (unpublished, 2004).Google Scholar
12.Zych, E., Hreniak, D. and Strek, W.: Spectroscopy of Eu-doped Lu2O3-based x-ray phosphor. J. Alloys Compd. 341, 385 (2002).CrossRefGoogle Scholar
13.Zych, E., Hreniak, D., Strek, W., Kepinski, L. and Domagala, K.: Sintering properties of urea-derived Lu2O3-based phosphors. J. Alloys Compd. 341, 391 (2002).CrossRefGoogle Scholar
14.Ki, Y.K., Kim, H.K. and Kim, D.K.: Synthesis of Eu-doped (Gd, Y)2O3 transparent optical ceramic scintillator. J. Mater. Res. 19, 413 (2004).Google Scholar