Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-09T13:15:36.209Z Has data issue: false hasContentIssue false

L12-strengthened high-entropy alloys for advanced structural applications

Published online by Cambridge University Press:  22 June 2018

Tao Yang
Affiliation:
Center for Advanced Structural Materials, College of Science and Engineering, City University of Hong Kong, Hong Kong, China
Yilu Zhao
Affiliation:
Center for Advanced Structural Materials, College of Science and Engineering, City University of Hong Kong, Hong Kong, China
Weihong Liu*
Affiliation:
Center for Advanced Structural Materials, College of Science and Engineering, City University of Hong Kong, Hong Kong, China
Jijung Kai
Affiliation:
Center for Advanced Structural Materials, College of Science and Engineering, City University of Hong Kong, Hong Kong, China
Chaintsuan Liu*
Affiliation:
Center for Advanced Structural Materials, College of Science and Engineering, City University of Hong Kong, Hong Kong, China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Advanced alloys with both high strength and ductility are highly desirable for a wide range of engineering applications. Conventional alloy design strategies based on the single-principle element are approaching their limits in further optimization of their performances. Precipitation-hardened high-entropy alloys (HEAs), especially those strengthened by coherent L12-nanoparticles, have received considerable interest in recent years, enabling a new space for the development of advanced structural materials with superior mechanical properties. In this review, we highlight recent important advances of the newly developed L12-strengthened HEAs, including the aspects of computation-aided alloy design, unique properties, atomic-level characterization, phase evolution, and stability. In particular, we focus our attention on elucidating fundamental scientific issues involving the alloying effects, precipitation behaviors, mechanical performances, and the corresponding deformation mechanisms, all of which provide a comprehensive metallurgical understanding and guidance for the design of this new class of HEAs. Finally, future research directions and prospects are also critically assessed.

Type
Invited Review
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

References

REFERENCES

Ritchie, R.O.: The conflicts between strength and toughness. Nat. Mater. 10, 817 (2011).CrossRefGoogle ScholarPubMed
Jiao, Z.B., Luan, J.H., Miller, M.K., Yu, C.Y., and Liu, C.T.: Effects of Mn partitioning on nanoscale precipitation and mechanical properties of ferritic steels strengthened by NiAl nanoparticles. Acta Mater. 84, 283 (2015).CrossRefGoogle Scholar
Yeh, J.W., Chen, S.K., Lin, S.J., Gan, J.Y., Chin, T.S., Shun, T.T., Tsau, C.H., and Chang, S.Y.: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299 (2004).CrossRefGoogle Scholar
Cantor, B.: Multicomponent and high entropy alloys. Entropy 16, 4749 (2014).CrossRefGoogle Scholar
Kozak, R., Sologubenko, A., and Steurer, W.: Single-phase high-entropy alloys—An overview. Z. Kristallogr.–Cryst. Mater. 230, 5568 (2015).CrossRefGoogle Scholar
Lu, Z.P., Wang, H., Chen, M.W., Baker, I., Yeh, J.W., Liu, C.T., and Nieh, T.G.: An assessment on the future development of high-entropy alloys: Summary from a recent workshop. Intermetallics 66, 67 (2015).CrossRefGoogle Scholar
Senkov, O.N., Wilks, G.B., Miracle, D.B., Chuang, C.P., and Liaw, P.K.: Refractory high-entropy alloys. Intermetallics 18, 1758 (2010).CrossRefGoogle Scholar
Takeuchi, A., Chen, N., Wada, T., Zhang, W., Yokoyama, Y., Inoue, A., and Yeh, J.W.: Alloy design for high-entropy bulk glassy alloys. Procedia Eng. 36, 226 (2012).CrossRefGoogle Scholar
Yao, C., Wei, B., Zhang, P., Lu, X., Liu, P., and Tong, Y.: Facile preparation and magnetic study of amorphous Tm–Fe–Co–Ni–Mn multicomponent alloy nanofilm. J. Rare Earths 29, 133 (2011).CrossRefGoogle Scholar
Yeh, J-W.: Alloy design strategies and future trends in high-entropy alloys. JOM 65, 1759 (2013).CrossRefGoogle Scholar
Zhang, Y., Zuo, T.T., Tang, Z., Gao, M.C., Dahmen, K.A., Liaw, P.K., and Lu, Z.P.: Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 1 (2014).CrossRefGoogle Scholar
Huang, H., Wu, Y., He, J., Wang, H., Liu, X., An, K., Wu, W., and Lu, Z.: Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering. Adv. Mater. 29, 17 (2017).CrossRefGoogle ScholarPubMed
Senkov, O.N., Miller, J.D., Miracle, D.B., and Woodward, C.: Accelerated exploration of multi-principal element alloys for structural applications. Calphad 50, 32 (2015).CrossRefGoogle Scholar
Gludovatz, B., Hohenwarter, A., Catoor, D., Chang, E.H., George, E.P., and Ritchie, R.O.: A fracture-resistant high-entropy alloy for cryogenic applications. Science 345, 1153 (2014).CrossRefGoogle ScholarPubMed
Singh, A.K. and Subramaniam, A.: On the formation of disordered solid solutions in multi-component alloys. J. Alloys Compd. 587, 113 (2014).CrossRefGoogle Scholar
Tian, F., Varga, L.K., Chen, N., Shen, J., and Vitos, L.: Empirical design of single phase high-entropy alloys with high hardness. Intermetallics 58, 1 (2015).CrossRefGoogle Scholar
Yao, M.J., Pradeep, K.G., Tasan, C.C., and Raabe, D.: A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility. Scr. Mater. 72–73, 5 (2014).CrossRefGoogle Scholar
Wu, Z., Bei, H., Pharr, G.M., and George, E.P.: Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures. Acta Mater. 81, 428 (2014).CrossRefGoogle Scholar
Liu, W.H., Yang, T., and Liu, C.T.: Precipitation hardening in CoCrFeNi-based high entropy alloys. Mater. Chem. Phys. 210, 211 (2017).CrossRefGoogle Scholar
Liu, W.H., Lu, Z.P., He, J.Y., Luan, J.H., Wang, Z.J., Liu, B., Liu, Y., Chen, M.W., and Liu, C.T.: Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases. Acta Mater. 116, 332 (2016).CrossRefGoogle Scholar
Jiao, Z.B., Luan, J.H., Miller, M.K., Chung, Y.W., and Liu, C.T.: Co-precipitation of nanoscale particles in steels with ultra-high strength for a new era. Mater. Today 20, 142154 (2016).CrossRefGoogle Scholar
Jiao, Z.B., Luan, J.H., Zhang, Z.W., Miller, M.K., and Liu, C.T.: High-strength steels hardened mainly by nanoscale NiAl precipitates. Scr. Mater. 87, 45 (2014).CrossRefGoogle Scholar
Pickering, E.J., Muñoz-Moreno, R., Stone, H.J., and Jones, N.G.: Precipitation in the equiatomic high-entropy alloy CrMnFeCoNi. Scr. Mater. 113, 106 (2016).CrossRefGoogle Scholar
Shun, T-T., Chang, L-Y., and Shiu, M-H.: Age-hardening of the CoCrFeNiMo0.85 high-entropy alloy. Mater. Charact. 81, 92 (2013).CrossRefGoogle Scholar
Shun, T-T., Hung, C-H., and Lee, C-F.: The effects of secondary elemental Mo or Ti addition in Al0.3CoCrFeNi high-entropy alloy on age hardening at 700 °C. J. Alloys Compd. 495, 55 (2010).CrossRefGoogle Scholar
He, J.Y., Wang, H., Huang, H.L., Xu, X.D., Chen, M.W., Wu, Y., Liu, X.J., Nieh, T.G., An, K., and Lu, Z.P.: A precipitation-hardened high-entropy alloy with outstanding tensile properties. Acta Mater. 102, 187 (2016).CrossRefGoogle Scholar
Ming, K., Bi, X., and Wang, J.: Precipitation strengthening of ductile Cr15Fe20Co35Ni20Mo10 alloys. Scr. Mater. 137, 88 (2017).CrossRefGoogle Scholar
Zhao, Y.L., Yang, T., Tong, Y., Wang, J., Luan, J.H., Jiao, Z.B., Chen, D., Yang, Y., Hu, A., Liu, C.T., and Kai, J.J.: Heterogeneous precipitation behavior and stacking-fault-mediated deformation in a CoCrNi-based medium-entropy alloy. Acta Mater. 138, 72 (2017).CrossRefGoogle Scholar
Li, Z., Pradeep, K.G., Deng, Y., Raabe, D., and Tasan, C.C.: Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature 534, 227 (2016).CrossRefGoogle ScholarPubMed
He, J.Y., Wang, H., Wu, Y., Liu, X.J., Mao, H.H., Nieh, T.G., and Lu, Z.P.: Precipitation behavior and its effects on tensile properties of FeCoNiCr high-entropy alloys. Intermetallics 79, 41 (2016).CrossRefGoogle Scholar
Liu, W.H., He, J.Y., Huang, H.L., Wang, H., Lu, Z.P., and Liu, C.T.: Effects of Nb additions on the microstructure and mechanical property of CoCrFeNi high-entropy alloys. Intermetallics 60, 1 (2015).CrossRefGoogle Scholar
Antonov, S., Detrois, M., and Tin, S.: Design of novel precipitate-strengthened Al–Co–Cr–Fe–Nb–Ni high-entropy superalloys. Metall. Mater. Trans. A 49, 305 (2017).CrossRefGoogle Scholar
Chang, Y-J. and Yeh, A-C.: The formation of cellular precipitate and its effect on the tensile properties of a precipitation strengthened high entropy alloy. Mater. Chem. Phys. 210, 111119 (2017).CrossRefGoogle Scholar
Daoud, H.M., Manzoni, A.M., Wanderka, N., and Glatzel, U.: High-temperature tensile strength of Al10Co25Cr8Fe15Ni36Ti6 compositionally complex alloy (high-entropy alloy). JOM 67, 2271 (2015).CrossRefGoogle Scholar
Gwalani, B., Choudhuri, D., Soni, V., Ren, Y., Styles, M., Hwang, J.Y., Nam, S.J., Ryu, H., Hong, S.H., and Banerjee, R.: Cu assisted stabilization and nucleation of L12 precipitates in Al0.3CuFeCrNi2 fcc-based high entropy alloy. Acta Mater. 129, 170 (2017).CrossRefGoogle Scholar
Manzoni, A., Singh, S., Daoud, H., Popp, R., Völkl, R., Glatzel, U., and Wanderka, N.: On the path to optimizing the Al–Co–Cr–Cu–Fe–Ni–Ti high entropy alloy family for high temperature applications. Entropy 18, 104 (2016).CrossRefGoogle Scholar
Tsai, M-H., Yuan, H., Cheng, G., Xu, W., Tsai, K-Y., Tsai, C-W., Jian, W.W., Juan, C-C., Shen, W-J., Chuang, M-H., Yeh, J-W., and Zhu, Y.T.: Morphology, structure and composition of precipitates in Al0.3CoCrCu0.5FeNi high-entropy alloy. Intermetallics 32, 329 (2013).CrossRefGoogle Scholar
Tsao, T.K., Yeh, A.C., Kuo, C.M., Kakehi, K., Murakami, H., Yeh, J.W., and Jian, S.R.: The high temperature tensile and creep behaviors of high entropy superalloy. Sci. Rep. 7, 12658 (2017).CrossRefGoogle ScholarPubMed
Wang, Z.G., Zhou, W., Fu, L.M., Wang, J.F., Luo, R.C., Han, X.C., Chen, B., and Wang, X.D.: Effect of coherent L12 nanoprecipitates on the tensile behavior of a fcc-based high-entropy alloy. Mater. Sci. Eng., A 696, 503 (2017).CrossRefGoogle Scholar
Xu, X.D., Liu, P., Guo, S., Hirata, A., Fujita, T., Nieh, T.G., Liu, C.T., and Chen, M.W.: Nanoscale phase separation in a fcc-based CoCrCuFeNiAl0.5 high-entropy alloy. Acta Mater. 84, 145 (2015).CrossRefGoogle Scholar
Zhao, Y.Y., Chen, H.W., Lu, Z.P., and Nieh, T.G.: Thermal stability and coarsening of coherent particles in a precipitation-hardened (NiCoFeCr)94Ti2Al4 high-entropy alloy. Acta Mater. 147, 184 (2018).CrossRefGoogle Scholar
Guo, S.: Phase selection rules for cast high entropy alloys: An overview. Mater. Sci. Technol. 31, 1223 (2015).CrossRefGoogle Scholar
Ye, Y.F., Wang, Q., Lu, J., Liu, C.T., and Yang, Y.: The generalized thermodynamic rule for phase selection in multicomponent alloys. Intermetallics 59, 75 (2015).CrossRefGoogle Scholar
Wang, Z., Qiu, W., Yang, Y., and Liu, C.T.: Atomic-size and lattice-distortion effects in newly developed high-entropy alloys with multiple principal elements. Intermetallics 64, 63 (2015).CrossRefGoogle Scholar
Guo, S., Ng, C., Lu, J., and Liu, C.T.: Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J. Appl. Phys. 109, 103505 (2011).CrossRefGoogle Scholar
Zhang, Y., Lu, Z.P., Ma, S.G., Liaw, P.K., Tang, Z., Cheng, Y.Q., and Gao, M.C.: Guidelines in predicting phase formation of high-entropy alloys. MRS Commun. 4, 57 (2014).CrossRefGoogle Scholar
Zhang, Y., Zhou, Y.J., Lin, J.P., Chen, G.L., and Liaw, P.K.: Solid-solution phase formation rules for multi-component alloys. Adv. Eng. Mater. 10, 534 (2008).CrossRefGoogle Scholar
Jiao, Z.B., Luan, J.H., Miller, M.K., and Liu, C.T.: Precipitation mechanism and mechanical properties of an ultra-high strength steel hardened by nanoscale NiAl and Cu particles. Acta Mater. 97, 58 (2015).CrossRefGoogle Scholar
Luan, J.H., Jiao, Z.B., Chen, G., and Liu, C.T.: Effects of boron additions and solutionizing treatments on microstructures and ductility of forged Ti–6Al–4V alloys. J. Alloys Compd. 624, 170 (2015).CrossRefGoogle Scholar
Suzuki, A., Inui, H., and Pollock, T.M.: L12-strengthened cobalt-base superalloys. Annu. Rev. Mater. Res. 45, 345 (2015).CrossRefGoogle Scholar
He, F., Wang, Z., Zhu, M., Li, J., Dang, Y., and Wang, J.: The phase stability of Ni2CrFeMox multi-principal-component alloys with medium configurational entropy. Mater. Des. 85, 1 (2015).CrossRefGoogle Scholar
Chang, Y-J. and Yeh, A-C.: The evolution of microstructures and high temperature properties of AlxCo1.5CrFeNi1.5Tiy high entropy alloys. J. Alloys Compd. 653, 379 (2015).CrossRefGoogle Scholar
Pickering, E.J., Stone, H.J., and Jones, N.G.: Fine-scale precipitation in the high-entropy alloy Al0.5CrFeCoNiCu. Mater. Sci. Eng., A 645, 65 (2015).CrossRefGoogle Scholar
Yu, C.Y., Xu, X.D., Chen, M.W., and Liu, C.T.: Atomistic mechanism of nano-scale phase separation in fcc-based high entropy alloys. J. Alloys Compd. 663, 340 (2016).CrossRefGoogle Scholar
Seidman, D.N.: Three-dimensional atom-probe tomography: Advances and applications. Annu. Rev. Mater. Res. 37, 127 (2007).CrossRefGoogle Scholar
Miller, M.K.: Atom Probe Tomography: Analysis at the Atomic Level (Springer Science & Business Media, Berlin/Heidelberg, Germany, 2012).Google Scholar
Yang, T., Zhao, Y.L., and Liu, C.T.: Unpublished work.Google Scholar
Han, B., Wei, J., Tong, Y., Chen, D., Zhao, Y., Wang, J., He, F., Yang, T., Zhao, C., and Shimizu, Y.: Composition evolution of gamma prime nanoparticles in the Ti-doped CoFeCrNi high entropy alloy. Scr. Mater. 148, 42 (2018).CrossRefGoogle Scholar
Reed, R.C. and Rae, C.M.F.: Physical Metallurgy of the Nickel-Based Superalloys (Elsevier, Amsterdam, the Netherlands, 2014); p. 2215.Google Scholar
Reed, R.C.: The Superalloys: Fundamentals and Applications (Cambridge University Press, Cambridge, United Kingdom, 2008).Google Scholar
He, J.Y., Wang, H., Wu, Y., Liu, X.J., Nieh, T.G., and Lu, Z.P.: High-temperature plastic flow of a precipitation-hardened FeCoNiCr high entropy alloy. Mater. Sci. Eng., A 686, 34 (2017).CrossRefGoogle Scholar
Kuo, C-M. and Tsai, C-W.: Effect of cellular structure on the mechanical property of Al0.2Co1.5CrFeNi1.5Ti0.3 high-entropy alloy. Mater. Chem. Phys. 210, 103110 (2017).CrossRefGoogle Scholar
Mughrabi, H.: The importance of sign and magnitude of γ/γ′ lattice misfit in superalloys—With special reference to the new γ′-hardened cobalt-base superalloys. Acta Mater. 81, 21 (2014).CrossRefGoogle Scholar
Tsao, T.K., Chang, Y.J., Chang, K.C., Yeh, J.W., Chiou, M.S., Jian, S.R., Kuo, C.M., Wang, W.R., and Murakami, H.: Developing new type of high temperature alloys—High entropy superalloys. Int. J. Metall. Mater. Sci. Eng. 1, 14 (2015).Google Scholar
Tsao, T-K., Yeh, A-C., Kuo, C-M., and Murakami, H.: High temperature oxidation and corrosion properties of high entropy superalloys. Entropy 18, 62 (2016).CrossRefGoogle Scholar
Daoud, H.M., Manzoni, A.M., Völkl, R., Wanderka, N., and Glatzel, U.: Oxidation behavior of Al8Co17Cr17Cu8Fe17Ni33, Al23Co15Cr23Cu8Fe15Ni15, and Al17Co17Cr17Cu17Fe17Ni17 compositionally complex alloys (high-entropy alloys) at elevated temperatures in air. Adv. Eng. Mater. 17, 1134 (2015).CrossRefGoogle Scholar
Gwalani, B., Soni, V., Lee, M., Mantri, S.A., Ren, Y., and Banerjee, R.: Optimizing the coupled effects of Hall–Petch and precipitation strengthening in a Al0.3CoCrFeNi high entropy alloy. Mater. Des. 121, 254 (2017).CrossRefGoogle Scholar
Daoud, H., Manzoni, A., Völkl, R., Wanderka, N., and Glatzel, U.: Microstructure and tensile behavior of Al8Co17Cr17Cu8Fe17Ni33 (at.%) high-entropy alloy. JOM 65, 1805 (2013).CrossRefGoogle Scholar
Yang, T., Xia, S., Liu, S., Wang, C., Liu, S., Zhang, Y., Xue, J., Yan, S., and Wang, Y.: Effects of AL addition on microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloy. Mater. Sci. Eng., A 648, 15 (2015).CrossRefGoogle Scholar
Borkar, T., Gwalani, B., Choudhuri, D., Mikler, C., Yannetta, C., Chen, X., Ramanujan, R.V., Styles, M., Gibson, M., and Banerjee, R.: A combinatorial assessment of AlxCrCuFeNi2 (0 < x < 1.5) complex concentrated alloys: Microstructure, microhardness, and magnetic properties. Acta Mater. 116, 63 (2016).CrossRefGoogle Scholar
Tsao, T-K., Yeh, A-C., and Murakami, H.: The microstructure stability of precipitation strengthened medium to high entropy superalloys. Metall. Mater. Trans. A 48, 2435 (2017).CrossRefGoogle Scholar
Jiang, S., Wang, H., Wu, Y., Liu, X., Chen, H., Yao, M., Gault, B., Ponge, D., Raabe, D., Hirata, A., Chen, M., Wang, Y., and Lu, Z.: Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation. Nature 544, 460 (2017).CrossRefGoogle ScholarPubMed
Zhao, Y.L., Yang, T., Zhu, J.H., Chen, D., Yang, Y., Hu, A., Liu, C.T., and Kai, J.J.: Development of high-strength Co-free high-entropy alloys hardened by nanosized precipitates. Scr. Mater. 148, 51 (2018).CrossRefGoogle Scholar
Stoloff, N.: Physical and mechanical metallurgy of Ni3Al and its alloys. Int. Mater. Rev. 34, 153 (1989).CrossRefGoogle Scholar
Raynor, D. and Silcock, J.: Strengthening mechanisms in γ′ precipitating alloys. Met. Sci. J. 4, 121 (1970).CrossRefGoogle Scholar
Gladman, T.: Precipitation hardening in metals. Mater. Sci. Technol. 15, 30 (1999).CrossRefGoogle Scholar