Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T22:05:06.007Z Has data issue: false hasContentIssue false

Kinetic nature of hard magnetic Nd50Al15Fe15Co20 bulk metallic glass with distinct glass transition

Published online by Cambridge University Press:  03 March 2011

L. Xia*
Affiliation:
Institute of Materials, Shanghai University, Shanghai 200072 China; and Institute of Physics, Chinese Academy of Science, Beijing 100080, China
M.B. Tang
Affiliation:
Institute of Physics, Chinese Academy of Science, Beijing 100080, China
H. Xu
Affiliation:
Institute of Materials, Shanghai University, Shanghai 200072, China
M.X. Pan
Affiliation:
Institute of Physics, Chinese Academy of Science, Beijing 100080, China
D.Q. Zhao
Affiliation:
Institute of Physics, Chinese Academy of Science, Beijing 100080, China
W.H. Wang
Affiliation:
Institute of Physics, Chinese Academy of Science, Beijing 100080, China
Y.D. Dong
Affiliation:
Institute of Materials, Shanghai University, Shanghai 200072, China
*
* Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

A hard magnetic Nd50Al15Fe15Co20 bulk metallic glass (BMG) was prepared in the shape of a rod up to 3 mm in diameter by suction casting. The glass transition and crystallization behaviors as well as their kinetic nature have been studied. In contrast to the previously reported hard magnetic Nd–Al–Fe–Co BMGs, Nd50Al15Fe15Co20 as-cast rod exhibits a distinct glass transition and multistep crystallization behaviors in the differential scanning calorimetry traces and lower coercivity. The BMG provides an ideal model for the investigation of glass transition and crystallization of hard magnetic Nd–Al–Fe–Co glass-forming alloys.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Croat, J.J., J. Appl. Phys. 53, 3161 (1982).CrossRefGoogle Scholar
2Inoue, A., Zhang, T., Zhang, W. and Takeuchi, A., Mater. Trans. JIM 37, 99 (1996).CrossRefGoogle Scholar
3Inoue, A., Takeuchi, A. and Zhang, T., Metall. Mater. Trans. 29A, 1779 (1998).CrossRefGoogle Scholar
4Schneider, S., Bracchi, A., Samwer, K., Seibt, M. and Thiyagarajan, P., Appl. Phys. Lett. 80, 1749 (2002).CrossRefGoogle Scholar
5Ding, J., Li, Y. and Wang, X.Z., J. Phys. D 32, 713 (1999).CrossRefGoogle Scholar
6Fan, G.J., Löser, W., Roth, S., Eckert, J. and Schultz, L., J. Mater. Res. 15, 1556 (2000).CrossRefGoogle Scholar
7Wei, B.C., Zhang, Y., Zhuang, Y.X., Zhao, D.Q., Pan, M.X., Wang, W.H. and Hu, W.R., J. Appl. Phys. 89, 3529 (2001).CrossRefGoogle Scholar
8Wei, B.C., Wang, W.H., Pan, M.X., Han, B.S., and Zhang, Z.R., Phys. Rev. B 64, 012406 (2001).CrossRefGoogle Scholar
9Xing, L.Q., Eckert, J., Löser, W., Roth, S. and Schultz, L., J. Appl. Phys. 88, 3565 (2000).CrossRefGoogle Scholar
10He, Y., Price, C.E., Poon, S.J. and Shiflet, G.J., Philos. Mag. Lett. 70, 371 (1994).CrossRefGoogle Scholar
11Zhao, Z.F., Zhang, Z., Wen, P., Pan, M.X., Zhao, D.Q., Wang, W.H. and Wang, W.L., Appl. Phys. Lett. 82,4701 (2003).Google Scholar
12Wang, L., Ding, J., Li, Y., Kong, H.Z., Feng, Y.P. and Wang, X.Z., J. Phys. Condens. Matter 12, 4253 (2000).CrossRefGoogle Scholar
13Xia, L., Wei, B.C., Zhang, Z., Pan, M.X., Wang, W.H. and Dong, Y.D., J. Phys. D 36, 775 (2003).CrossRefGoogle Scholar
14Wei, B.C., Löser, W., Xia, L., Roth, S., Pan, M.X., Wang, W.H. and Eckert, J., Acta Mater. 50, 4357 (2002).CrossRefGoogle Scholar
15Xia, L., Tang, M.B., Wei, B.C., Pan, M.X., Zhao, D.Q., Wang, W.H. and Dong, Y.D., J. Phys. D 36, 2954 (2003).CrossRefGoogle Scholar
16Inoue, A. and Zhang, T., Mater. Sci. Eng. A 226–228, 393 (1997).CrossRefGoogle Scholar
17Kumar, G., Eckert, J., Roth, S., Löser, W., Schultz, L. and Ram, S., Acta Mater. 51, 229 (2003).CrossRefGoogle Scholar
18Xia, L., Wei, B.C., Pan, M.X., Zhao, D.Q., Wang, W.H. and Dong, Y.D., J. Phys. Condens. Matter 15, 3531 (2003).CrossRefGoogle Scholar
19Wang, X.Z., Li, Y., Ding, J., Si, L. and Kong, H.Z., J. Alloys Comp. 290, 209 (1999).CrossRefGoogle Scholar
20Kissinger, H.E., J. Res. Natl. Bur. Stand. 57, 217 (1956).CrossRefGoogle Scholar
21Mitrovic, N., Roth, S. and Eckert, J., Appl. Phys. Lett. 78, 2145 (2001).CrossRefGoogle Scholar
22Fecht, H.J., Mater. Trans. JIM 36, 777 (1995).CrossRefGoogle Scholar
23Zhuang, Y.X., Wang, W.H., Zhang, Y., Pan, M.X. and Zhao, D.Q., Appl. Phys. Lett. 75, 2392 (1999).CrossRefGoogle Scholar
24Zhuang, Y.X. and Wang, W.H., J. Appl. Phys. 87, 8209 (2000).CrossRefGoogle Scholar
25Busch, R., Kim, Y.J. and Iohnson, W.L., J. Appl. Phys. 77, 4093 (1995).CrossRefGoogle Scholar
26Lasocka, M., Mater. Sci. Eng. 23, 173 (1976).CrossRefGoogle Scholar
27Hwang, C.H., Kang, S., Cho, K. and Kawamura, K., Scr. Metall. 19, 1403 (1985).CrossRefGoogle Scholar
28Kauzmann, W., Chem. Rev. 43, 219 (1948).CrossRefGoogle Scholar