Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T12:39:54.319Z Has data issue: false hasContentIssue false

Isothermal oxidation of bulk Zr2Al3C4 at 500 to 1000 °C in air

Published online by Cambridge University Press:  31 January 2011

L.F. He
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; and Graduate School of Chinese Academy of Sciences, Beijing 100039, China
Z.J. Lin
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; and Graduate School of Chinese Academy of Sciences, Beijing 100039, China
Y.W. Bao
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
M.S. Li
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
J.Y. Wang
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Y.C. Zhou*
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The isothermal oxidation behavior of Zr2Al3C4 in the temperature range of 500 to 1000 °C for 20 h in air has been investigated. The oxidation kinetics follow a parabolic law at 600 to 800 °C and a linear law at higher temperatures. The activation energy is determined to be 167.4 and 201.2 kJ/mol at parabolic and linear stages, respectively. The oxide scales have a monolayer structure, which is a mixture of ZrO2 and Al2O3. As indicated by x-ray diffraction and Raman spectra, the scales formed at 500 to 700 °C are amorphous, and at higher temperatures are α-Al2O3 and t-ZrO2 nanocrystallites. The nonselective oxidation of Zr2Al3C4 can be attributed to the strong coupling between Al3C2 units and ZrC blocks in its structure, and the close oxygen affinity of Zr and Al.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Shaffer, P.T.B.: Handbooks of High-Temperature Materials Plenum Press New York 1964 142–146Google Scholar
2Storms, E.K.: The Refractory Carbides Academic Press New York 1967 18–34Google Scholar
3Opeka, M.M., Talmy, I.G., Wuchina, E.J., Zaykoski, J.A.Causey, S.J.: Mechanical, thermal, and oxidation properties of refractory hafnium and zirconium compounds. J. Eur. Ceram. Soc. 19, 2405 1999CrossRefGoogle Scholar
4Kuriakose, A.K.Margrave, J.L.: The oxidation kinetics of zirconium diboride and zirconium carbide at high temperatures. J. Electrochem. Soc. 111, 827 1964CrossRefGoogle Scholar
5Shimada, S., Nishisako, M., Inagaki, M.Yamamoto, K.: Formation and microstructure of carbon-containing oxide scales by oxidation of single crystals of zirconium carbide. J. Am. Ceram. Soc. 78, 41 1995CrossRefGoogle Scholar
6Wang, X.H.Zhou, Y.C.: Oxidation behavior of Ti3AlC2 at 1000–1400 °C in air. Corros. Sci. 45, 891 2003CrossRefGoogle Scholar
7Wang, X.H.Zhou, Y.C.: High-temperature oxidation behavior of Ti2AlC in air. Oxid. Met. 59, 303 2003CrossRefGoogle Scholar
8He, L.F., Lin, Z.J., Wang, J.Y., Bao, Y.W., Li, M.S.Zhou, Y.C.: Synthesis and characterization of bulk Zr2Al3C4 ceramic. J. Am. Ceram. Soc. 90, 3687 2007CrossRefGoogle Scholar
9He, L.F., Wang, J.Y., Bao, Y.W.Zhou, Y.C.: Elastic and thermal properties of Zr2Al3C4: Experimental investigation and ab initio calculations. J. Appl. Phys. 102, 043531 2007CrossRefGoogle Scholar
10Leela-adisorn, U., Choi, S.M., Hashimoto, S., Honda, S., Awaji, H., Hayakawa, K.Yamaguchi, A.: Sintering and characterization of Zr2Al3C5 monolith. Key Eng. Mater. 317–318, 27 2006CrossRefGoogle Scholar
11Lin, Z.J., Zhuo, M.J., He, L.F., Zhou, Y.C., Li, M.S.Wang, J.Y.: Atomic-scale microstructures of Zr2Al3C4 and Zr3Al3C5 ceramics. Acta Mater. 54, 3843 2006CrossRefGoogle Scholar
12Wang, J.Y., Zhou, Y.C., Lin, Z.J., Liao, T.He, L.F.: First-principles prediction of the mechanical properties and electrical structure of ternary aluminum carbide Zr3Al3C5. Phy. Rev. B 73, 134107 2006CrossRefGoogle Scholar
13He, L.F., Zhou, Y.C., Bao, Y.W., Lin, Z.J.Wang, J.Y.: Synthesis, physical and mechanical properties of bulk Zr3Al3C5 ceramic. J. Am. Ceram. Soc. 90, 1164 2007CrossRefGoogle Scholar
14 JCPDS No. 79-1771. International Center for Diffraction Data: Newton Square, PA, 1999Google Scholar
15He, L.F., Zhou, Y.C., Bao, Y.W., Wang, J.Y.Li, M.S.: Synthesis and oxidation of Zr3Al3C5 powders. Int. J. Mater. Res. 98, 3 2007CrossRefGoogle Scholar
16Wang, X.H.Zhou, Y.C.: Intermediate-temperature oxidation behavior of Ti2AlC in air. J. Mater. Res. 17, 2974 2002CrossRefGoogle Scholar
17Aminzadeh, A.: Excitation frequency dependence and fluorescence in the Raman spectra of Al2O3. Appl. Spectrosc. 51, 817 1997CrossRefGoogle Scholar
18Denis, A.Garcia, E.A.: Model to simulate parabolic followed by linear oxidation kinetics. Oxid. Met. 29, 153 1988CrossRefGoogle Scholar
19Voitovich, V.B., Lavrenko, V.A., Voitovich, R.F.Golovko, E.I.: The effect of purity on high-temperature oxidation of zirconium. Oxid. Met. 42, 223 1994CrossRefGoogle Scholar
20Turner Thermal expansion stressed in reinforced plastics. J. Res. NBS 37, 239 1946Google Scholar
21Fukuhara, M.Sampei, A.: Low-temperature damping anomaly in an yttria-stabilized tetragonal zirconia polycrystal. Philos. Mag. Lett. 80, 325 2000CrossRefGoogle Scholar
22Green, D.J.: An Introduction to the Mechanical Properties of Ceramics, (Cambridge University Press, Cambridge, UK) 1993 21, 88Google Scholar
23Evans, A.G.Hutchinson, J.W.: The thermomechanical integrity of thin films and multilayers. Acta Metall. Mater. 43, 2507 1995CrossRefGoogle Scholar
24Chiang, Y.M., Birnie, D.Kingery, W.D.: Physical Ceramics: Principles for Ceramic Science and Engineering John Wiley & Sons New York 1997Google Scholar
25Lin, Z.J., He, L.F., Li, M.S., Wang, J.Y.Zhou, Y.C.: Layered stacking characteristics of ternary zirconium aluminum carbides. J. Mater. Res. 22(11), 3058 2007CrossRefGoogle Scholar
26Wang, J.Y., Zhou, Y.C., Liao, T.Lin, Z.J.: Trend in crystal structure of layered ternary T–Al–C carbides (T= Sc, Ti, V, Cr, Zr, Nb, Mo, Hf, W, and Ta). J. Mater. Res. 22(10), 2685 2007CrossRefGoogle Scholar
27Rao, Y.K.: Stoichoimetry and Thermodynamics of Metallurgical Processed Cambridge University Press Cambridge, UK 1985Google Scholar
28Shukla, S.Seal, S.: Mechanism of room temperature metastable tetragonal phase stabilization in zirconia. Int. Mater. Rev. 50, 45 2005CrossRefGoogle Scholar
29Paljević, M.: High-temperature oxidation behavior in the Zr–Al system. J. Alloys Compd. 204, 119 1994CrossRefGoogle Scholar
30Geßwein, H.Binder, J.R.: Thermokinetic study of oxidation of ZrAl3 powders. Thermochim. Acta. 444, 6 2006CrossRefGoogle Scholar
31Štefanić, G., Musić, S.Trojko, R.: The influence of thermal treatment on the phase development in HfO2–Al2O3 and ZrO2–Al2O3 systems. J. Alloys Compd. 388, 126 2005CrossRefGoogle Scholar