Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T22:21:03.805Z Has data issue: false hasContentIssue false

Ion-beam synthesis of epitaxial Au nanocrystals in MgO

Published online by Cambridge University Press:  03 March 2011

S. Thevuthasan*
Affiliation:
Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352
V. Shutthanandan
Affiliation:
Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352
C.M. Wang
Affiliation:
Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352
W.J. Weber
Affiliation:
Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352
W. Jiang
Affiliation:
Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352
A. Cavanagh
Affiliation:
Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352
J. Lian
Affiliation:
Department of Materials Science Engineering and Geological Sciences, The University of Michigan, Ann Arbor, Michigan 48109
L.M. Wang
Affiliation:
Department of Materials Science Engineering and Geological Sciences, The University of Michigan, Ann Arbor, Michigan 48109
*
a)Address all correspondence to this author.e-mail: [email protected]
Get access

Abstract

The formation of Au nanoclusters in MgO using ion implantation and subsequent annealing was investigated. Approximately 1200 and 1400 Au2+ ions/nm2 were implanted in MgO(100) substrates at 300 and 975 K, respectively. Subsequent annealing in air for 10 h at 1275 K promoted the formation of Au nanostructures in MgO. The sample implanted at 300 K showed severe radiation damage. In addition, two-dimensional plateletlike structures with possible composition of Au and MgO were formed during implantation in the sample that was implanted at 300 K. In contrast, Au implantation at 975 K promoted the nucleation of Au nanostructures during implantation. Subsequent annealing of both samples show three-dimensional clusters in MgO. However, the 975 K implanted sample shows clean, high-quality, single-crystal Au clusters that have an epitaxial relationship to MgO(100).

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Zinke-Allmang, M., Feldman, L.C. and Grabow, M.H., Surf. Sci. Rep. 16, 377 (1992).CrossRefGoogle Scholar
2Notzel, R., Semicond. Sci. Technol. 11, 1365 (1996).Google Scholar
3Xin, S.H., Wang, P.D., Yin, A., Kim, C., Dobrowolska, M., Merz, J.L. and Furdyna, J.K., Appl. Phys. Lett. 69, 3884 (1996).CrossRefGoogle Scholar
4Flack, F., Samarth, N., Nikitin, V., Crowell, P.A., Shi, J., Levy, J. and Awschalom, D.D., Phys. Rev. B 54, 17312 (1996).CrossRefGoogle Scholar
5Guryanov, G.M., Cirlin, G.E., Pterov, V.N., Polyakov, N.K., Golubok, A.O., Tipissev, S.Y., Gubanov, V.B., Samsonenko, Y.B., Ledentsov, N.N., Shchukin, V.A., Bimberg, M. Grundmann D. and Alferov, Z.I., Surf. Sci. 352, 651 (1996).CrossRefGoogle Scholar
6Ko, H.C., Park, D.C., Kawakami, Y. and Fujita, S., Appl. Phys. Lett. 70, 3278 (1997).CrossRefGoogle Scholar
7Daruka, I. and Barabási, A.L., Appl. Phys. Lett. 72, 2102 (1998).CrossRefGoogle Scholar
8Lee, S., Daruka, I., Kim, C.S., Barabási, A.L., Merz, J.L. and Furdyna, J.K., Phys. Rev. Lett. 81, 3479 (1998).CrossRefGoogle Scholar
9Medeiros-Riberiro, G., Bratkovski, A.M., Kamins, T.I., Ohlberg, D.A.A. and Williams, R.S., Science 279, 353 (1998).CrossRefGoogle Scholar
10Qian, Y., Ila, D., Zimmerman, R.L., Poker, D.B., Boatner, L.A. and Hensley, D.K., Nucl. Instrum. Methods Phys. Res. B 127/128, 524 (1997).CrossRefGoogle Scholar
11Gea, L.A., Boatner, L.A., Evans, H.M. and Zuhr, R., Nucl. Instrum. Methods Phys. Res. B 127/128, 553 (1997).CrossRefGoogle Scholar
12Zimmerman, R.L., Ila, D., Williams, E.K., Sarkisov, S., Poker, D.B. and Hensley, D.K., Nucl. Instrum. Methods Phys. Res. B 141, 308 (1998).CrossRefGoogle Scholar
13Meldrum, A., Zuhr, R.A., Sonder, E., Budai, J.D., White, C.W., Boatner, L.A., Ewing, R.C. and Henderson, D.O., Appl. Phys. Lett. 74, 697 (1999).CrossRefGoogle Scholar
14Zimmerman, R.L., Ila, D., Williams, E.K., Poker, D.B., Hensley, D.K., Klatt, C. and Kalbitzer, S., Nucl. Instrum. Methods Phys. Res. B 148, 1064 (1998).CrossRefGoogle Scholar
15Meldrum, A., Boatner, L.A., White, C.W. and Ewing, R.C., Mater. Res. Innovations 3, 190 (2000).CrossRefGoogle Scholar
16Meldrum, A., Boatner, L.A. and White, C.W., Nucl. Instrum. Methods Phys. Res. B 178, 7 (2001).CrossRefGoogle Scholar
17Honda, A.S., Modine, F.A., Meldrum, A., Budai, J.D., Haynes, T.E. and Boatner, L.A., Appl. Phys. Lett. 77, 711 (2000).CrossRefGoogle Scholar
18Thevuthasan, S., Peden, C.H.F., Engelhard, M.H., Baer, D.R., Herman, G.S., Jiang, W., Liang, Y. and Weber, W.J., Nucl. Instrum. Methods Phys. Res. A 420, 81 (1999).CrossRefGoogle Scholar
19SIMNRA User’s Guide, edited by Mayer, M. (Max-Plank-Institut fur Plasmaphysik, Munich, Germany, 1997).Google Scholar
20Wang, C.M., Thevuthasan, S., Shutthanandan, V., Cavanagh, A., Jiang, W., Thomas, L.E. and Weber, W.J., J. Appl. Phys. 93, 6327 (2003).CrossRefGoogle Scholar