Hostname: page-component-5f745c7db-nzk4m Total loading time: 0 Render date: 2025-01-06T06:16:50.577Z Has data issue: true hasContentIssue false

Ion transport and electrochemical tuning of Fermi level in single-wall carbon nanotubes: In situ Raman scattering

Published online by Cambridge University Press:  03 March 2011

S. Gupta*
Affiliation:
Department of Physics and Materials Science, Missouri State University, Springfield, Missouri 65897; and Department of Electrical and Computer Engineering, University of Missouri, Columbia, Missouri 65211-3856
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The in situ Raman spectroscopy technique was used to investigate the ion transport and to determine the concomitant electrochemical tuning of Fermi level in single-wall carbon nanotubes. The variation of structural bonding in a single-wall carbon nanotube bundle dipped in aqueous alkaline earth halide electrolyte such as CaCl2 with electrochemical biasing was monitored. This is because Raman scattering can detect changes in C–C bond length through radial breathing mode (RBM) at ∼184 cm−1, which varies inversely with the nanotube diameter and the G band at ∼1590 cm−1, varying with the axial bond length. Consistent reversible and substantial variation in Raman intensity of both modes was induced by electrode potential point at the fine and continuous tuning (alternatively, emptying/depleting or filling) of the specific bonding and anti-bonding molecular states. Qualitatively, the results were explained in terms of changes in the energy gap occurring between the one-dimensional van Hove singularities present in the electron density of states, possibly arising due to the alterations in the overlap integral of π bonds between the p orbitals of the adjacent carbon atoms. We estimated the extent of variation of the absolute potential of the Fermi level and overlap integral (γ0) between the nearest-neighbor carbon atoms by modeling the electrochemical potential dependence of Raman intensity. Observations also suggested that the work function of the tube becomes larger for the metallic nanotubes in contrast to the simultaneously present semiconducting nanotubes.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Terrones, M., Banhart, F., Grobert, N., Charlier, J-C., Terrones, H., and Ajayan, P.M.: Molecular junctions by joining single-walled carbon nanotubes. Phys. Rev. Lett. 89, 075505 (2002).CrossRefGoogle ScholarPubMed
2Sun, G., Nicklaus, M., and Kertesz, M.: Dekker Encyclopedia of Nanoscience and Nanotechnology (New York, 2004), p. 3605.Google Scholar
3Treacy, M.M.J., Ebbesen, T.W., and Gibson, J.M.: Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381, 678 (1996).CrossRefGoogle Scholar
4Gao, B., Kelinhammes, A., Tang, X.P., Bower, C., Wu, Y., and Zhou, O.: Electrochemical intercalation of single-walled carbon nanotubes with lithium. Chem. Phys. Lett. 307, 153 (1999).CrossRefGoogle Scholar
5Liu, J., Rinzler, G., Dai, H., Hafner, J.H., Bradley, R.K., Boul, P.J., Lu, A., Iverson, T., Shelimov, K., Huffman, C.B., Rodriguez-Macias, F., Shon, Y., Lee, T.R., Colbert, D.T., and Smalley, R.E.: Fullerene pipes. Science 280, 1253 (1998).CrossRefGoogle ScholarPubMed
6Li, J., Ng, H.T., Cassell, A., Fan, W., Chen, H., Ye, Q., Koehne, J., Han, J., and Meyappan, M.: Carbon nanotube nanoelectrode array for ultrasensitive DNA detection. Nano Lett. 3, 597 (2003).CrossRefGoogle Scholar
7Cheung, C.L., Hafner, J.H., and Lieber, C.M.: Carbon nanotube atomic force microscopy tips: Direct growth by chemical vapor deposition and application to high-resolution imaging. Proc. Natl. Acad. Sci. USA 97, 3809 (2000).CrossRefGoogle ScholarPubMed
8Gupta, S., Hughes, M.H., Windle, A.H., and Robertson, J.: Charge transfer in carbon nanotube actuators investigated using in situ Raman spectroscopy. J. Appl. Phys. 95, 2038 (2004).CrossRefGoogle Scholar
9Hughes, M., Shaffer, M.S.P., Renouf, A.C., Singh, C., Chen, G.Z., Fray, D.J., and Windle, A.H.: Electrochemical capacitance of nanocomposite films formed by coating aligned arrays of carbon nanotubes with polypyrrole. Adv. Mater. 14, 382 (2002).3.0.CO;2-Y>CrossRefGoogle Scholar
10Charlier, J-C. and Lambin, Ph.: Electronic structure of carbon nanotubes with chiral symmetry. Phys. Rev. B 57, R15037 (1998).CrossRefGoogle Scholar
11Duesberg, G.S., Loa, I., Burghard, M., Syassen, K., and Roth, S.: Polarized Raman spectroscopy on isolated single-wall carbon nanotubes. Phys. Rev. Lett. 85, 5436 (2000).CrossRefGoogle ScholarPubMed
12Wildöer, J.W.G., Venema, L.C., Rinzler, A.G., Smalley, R.E., and Dekker, C.: Electronic structure of atomically resolved carbon nanotubes. Nature 391, 59 (1998).CrossRefGoogle Scholar
13Odom, T.W., Huang, J.L., Kim, P., and Lieber, C.M.: Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 391, 62 (1998).CrossRefGoogle Scholar
14O’Connell, M.J., Bachilo, S.M., Huffman, C.B., Moore, V.C., Strano, M.S., Haroz, E.H., Rialon, K.L., Boul, P.J., Noon, W.H., Kittrell, C., Ma, J.P., Hauge, R.H., Weisman, R.B., and Smalley, R.E.: Band gap fluorescence from individual single-walled carbon nanotubes. Science 297, 593 (2002).CrossRefGoogle ScholarPubMed
15Lovall, D., Buss, M., Graugnard, E., Andres, R.P., and Reifenberger, R.: Electron emission and structural characterization of a rope of single-walled carbon nanotubes. Phys. Rev. B 61, 5683 (2000).CrossRefGoogle Scholar
16Suzuki, S., Bower, C., Watanabe, Y., and Zhou, O.: Work functions and valence band states of pristine and Cs-intercalated single-walled carbon nanotube bundles. Appl. Phys. Lett. 76, 4007 (2000).CrossRefGoogle Scholar
17Shiraishi, M. and Alta, M.: Work function of carbon nanotubes. Carbon 39, 1913 (2001).CrossRefGoogle Scholar
18Kane, C.L. and Mele, E.J.: Size, shape, and low energy electronic structure of carbon nanotubes. Phys. Rev. Lett. 78, 1932 (1997).CrossRefGoogle Scholar
19Wada, Y.: New Horizon in Low-dimensional Electron Systems, Physics and Chemistry of Material with Low-dimensional structures edited by Aoki, H., Tsukada, M., Schluter, M., Levy, F. (Kluwer Academic, Boston, MA, 1991), pp. 415432.Google Scholar
20Dresselhaus, M.S. and Eklund, P.C.: Phonons in carbon nanotubes. Adv. Phys. 49, 705 (2000).CrossRefGoogle Scholar
21Falvo, M.R., Curry, G.J., Taylor, R.M., Chi, V., Brooks, F.P., Washburn, S., and Superfine, R.: Bending and buckling of carbon nanotubes under large strain. Nature 389, 582 (1997).CrossRefGoogle ScholarPubMed
22Baughman, R.H., Cui, C., Zakhidov, A.A., Iqbal, Z., Barisci, J.N., Spinks, G.M., Wallace, G.G., Mazzoldi, A., De Rossi, D., Rinzler, A.G., Jaschinski, O., Roth, S., and Kertesz, M.: Carbon nanotube actuators. Science 284, 1340 (1999).CrossRefGoogle ScholarPubMed
23Huber, J.E., Fleck, N.A., and Ashby, M.F.: The selection of mechanical actuators based on performance indices. Proc. R. Soc. London, Ser. A 453, 2185 (1997).CrossRefGoogle Scholar
24Ebbesen, T.W., Lezec, H.J., Hiura, H., Bennett, J.W., Ghaemi, H.F., and Thio, T.: Electrical conductivity of individual carbon nanotubes. Nature 382, 54 (1996).CrossRefGoogle Scholar
25Dresselhaus, M.S. and Dresselhaus, G.: Light scattering in graphite intercalation compounds, in Topics in Applied Physics Series, Vol. 53, edited by Cardona, M. and Güntherodt, G. (Springer-Verlag, Berlin, Germany, 1982), p. 3.Google Scholar
26Gupta, S., Hughes, M., Windle, A.H., and Robertson, J.: In situ Raman spectro- electrochemistry study of single-wall carbon nanotube mat. Diamond Relat. Mater. 13, 1314 (2003).CrossRefGoogle Scholar
27Zhou, W., Vavro, J., Nemes, N.M., Fischer, J.E., Borondics, F., Kamarás, K., and Tanner, D.B.: Charge transfer and Fermi level shift in p -doped single-walled carbon nanotubes. Phys. Rev. B 71, 205423 (2005).CrossRefGoogle Scholar
28Kazaoui, S., Minami, N., Kataura, H., and Achiba, Y.: Electronic Properties of Novel Materials—Molecular Nanostructures, edited by Kuzmany, H. and Roth, S. (AIP Conf. Proc. 544, AIP, New York, 2000), pp. 400403.Google Scholar
30Gill, P.R., Murray, W., and Wright, M.H.: The Levenberg-Marquardt Method, Sec. 4.7.3, in Practical Optimization (Academic Press, London, UK, 1981), pp. 136137.Google Scholar
31Jorio, A., Saito, R., Hafner, J.H., Lieber, C.M., Hunter, M., McClure, T., Dresselhaus, G., and Dresselhaus, M.S.: Structural (n, m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering. Phys. Rev. Lett. 86, 1118 (2001).CrossRefGoogle Scholar
32Rao, A.M., Richter, E., Bandow, S., Chase, B., Eklund, P.C., Williams, K.A., Fang, S., Subbaswamy, K.R., Menon, M., Thess, A., and Smalley, R.E.: Diameter-selective Raman scattering from vibrational modes in carbon nanotubes. Science 275, 187 (1997).CrossRefGoogle ScholarPubMed
33Reich, S., Thomsen, C., and Ordejón, P.: Elastic properties of carbon nanotubes under hydrostatic pressure. Phys. Rev. B 65, 3407 (2002).CrossRefGoogle Scholar
34Sandler, J., Shaffer, M.S.P., Windle, A.H., Halsall, M.P., Montes-Morán, M.A., Cooper, C.A., and Young, R.J.: Variations in the Raman peak shift as a function of hydrostatic pressure for various carbon nanostructures: A simple geometric effect. Phys. Rev. B 67, 035417 (2003).CrossRefGoogle Scholar
35An, C.P., Zardeny, Z.V., Iqbal, Z., Spinks, G., Baughman, R.H., and Zakhidov, A.: Raman scattering study of electrochemically doped single wall nanotubes. Synth. Met. 116, 411 (2001).CrossRefGoogle Scholar
36Kavan, L., Rapta, P., Dunsch, L., Bronikowski, M. J., Willis, P., and Smalley, R. E.: Electrochemical tuning of electronic structure of single-walled carbon nanotubes: In-situ Raman and vis-NIR study. J. Phys. Chem. 105 B,10764 (2001).CrossRefGoogle Scholar
37Duesburg, G.S.: unpublished results.Google Scholar
38Murakoshi, K. and Okazaki, K.: Electrochemical potential control of isolated single-walled carbon nanotubes on gold electrode. Electrochem. Acta 50, 3069 (2005).CrossRefGoogle Scholar
39Robertson, W.H. and Johnson, M.A.: Molecular aspects of halide ion hydration: The cluster approach. Ann. Rev. Phys. Chem. 54, 173 (2003).CrossRefGoogle ScholarPubMed
40Ruzicka, B., Degiorgi, L., Gaal, R., Thien-Nga, L., Basca, R., Salvetat, J.P., and Forro, L.: Optical and dc conductivity study of potassium-doped single-walled carbon nanotube films. Phys. Rev. B 61, R2468 (2000).CrossRefGoogle Scholar
41Kazaoui, S., Minami, N., Matsuda, N., Kataura, H., and Achiba, Y.: Electrochemical tuning of electronic states in single-wall carbon nanotubes studied by in situ absorption spectroscopy and ac resistance. Appl. Phys. Lett. 78, 3433 (2001).CrossRefGoogle Scholar
42Trasatti, S.: The concept of absolute electrode potential, an attempt at a calculation. J. Electroanal. Chem. 52, 313 (1974).CrossRefGoogle Scholar
43Parsons, R.: Standard Potentials in Aqueous Solution, edited by Bard, A.J., Parsons, R. and Jordan, J. (Marcel Dekker, New York and Basel, 1985).Google Scholar
44Ghosh, S., Sood, A.K., and Rao, C.N.R.: Electrochemical tuning of band structure of single-walled carbon nanotubes probed by in situ resonance Raman scattering. J. Appl. Phys. 92, 1165 (2002).CrossRefGoogle Scholar
45Okazaki, K., Nakato, Y., and Murakoshi, K.: Absolute potential of the Fermi level of isolated single-walled carbon nanotubes. Phys. Rev. B 68, 035434 (2003).CrossRefGoogle Scholar
46Rao, A.M., Eklund, P.C., Bandow, S., Thess, A., and Smalley, R.E.: Evidence for charge transfer in doped carbon nanotube bundles from Raman scattering. Nature 388, 257 (1997).CrossRefGoogle Scholar