Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T01:28:13.576Z Has data issue: false hasContentIssue false

Investigation on Structure Transition of Fullerene During Mechanical Alloying and Subsequent Treatments

Published online by Cambridge University Press:  31 January 2011

Z. G. Liu
Affiliation:
Department of Production Systems Engineering, Toyohashi University of Technology, Tempaku-cho, Toyohashi 441–8580, Japan
H. Ohi
Affiliation:
Department of Production Systems Engineering, Toyohashi University of Technology, Tempaku-cho, Toyohashi 441–8580, Japan
K. Masuyama
Affiliation:
Department of Mechanical Engineering, Toyama National College of Technology, 13 Hongoumachi, Toyama 939, Japan
K. Tsuchiya
Affiliation:
Department of Production Systems Engineering, Toyohashi University of Technology, Tempaku-cho, Toyohashi 441–8580, Japan
M. Umemoto
Affiliation:
Department of Production Systems Engineering, Toyohashi University of Technology, Tempaku-cho, Toyohashi 441–8580, Japan
Get access

Abstract

Mechanical milling of fullerene (soot containing C60/C70 fullerenes in a 8:2 molar ratio) was investigated through various characterization methods. It was found that mechanical milling would not destroy the molecular structure of fullerene C60 (C70), while the long-range order of the face-centered-cubic crystalline structure was easily modified and transformed into amorphous phase, a mixture of fullerene C60 (C70) polymers and monomers. Differential scanning calorimetry analysis revealed a recovery of polymers to pristine fullerene molecules at 678 K, which is much higher than the reported depolymerization temperature of fullerene polymers induced by photo irradiation and by high-pressure–temperature processes. It is suggested that the contaminated Fe acts as a catalyst in the polymerization process.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kroto, H.W., Heath, J.R., O'Brein, S.C., Curl, R.F., and Smalley, R.E., Nature 318, 162 (1985).CrossRefGoogle Scholar
2.Kratschmer, W., Lamb, L.D., Fostiropoulos, K., and Huffman, D.R., Nature 347, 354 (1990).CrossRefGoogle Scholar
3.Dresselhaus, M.S., Dresselhaus, G., and Eklund, P.C., Science of Fullerenes and Carbon Nanotubes (Academic Press, San Diego, CA, 1996).Google Scholar
4.Barrera, E.V., Sims, J., Callahan, D.L., Provenzano, P., Milliken, J., and Holtz, R.L., J. Mater. Res. 9, 2662 (1994).CrossRefGoogle Scholar
5.Barrera, E.V., Sims, J., and Callahan, D.L., J. Mater. Res. 10, 366 (1995).CrossRefGoogle Scholar
6.Haufler, R.E., Chai, Y., Chibanto, L.P.F, Conceicao, J., Jin, C., Wang, L.S., Maruyama, S., and Smalley, R.E., in Clusters and Cluster-Assembled Materials, edited by Averback, R.S., Bernholc, J., and Nelson, D.L. (Mater. Res. Soc. Symp. Proc. 206, Pittsburgh, PA, 1991), pp. 627630.Google Scholar
7.Milliken, J., Keller, T.M., Barahavski, A.P., McElvany, S.W., Callahan, J.H., and Nelson, H.H., Chem. Mater. 3, 386 (1991).CrossRefGoogle Scholar
8.Vassallo, A.M., Pang, L.S.K, Cole-Clark, P.A., and Wilson, M.A.J, J. Am. Chem. Soc. 113, 7920 (1991).CrossRefGoogle Scholar
9.Benjamin, J.S., Metall. Trans. 1, 2943 (1970).CrossRefGoogle Scholar
10.Gilman, P.S. and Benjamin, J.S., Annu. Rev. Mater. Sci. 13, 279 (1983).CrossRefGoogle Scholar
11.Sundaresan, R. and Froes, F.H., J. Metals 39(8), 22 (1987).Google Scholar
12.Fecht, H.J., Hellstern, E., Fu, Z., and Johnson, W.L., Metall. Trans. 21A, 2333 (1990).CrossRefGoogle Scholar
13.Fecht, H.J., Hellstern, E., Fu, Z., and Johnson, W.L., Adv. Powder Metall. 1, 1111 (1989).Google Scholar
14.Eckert, J., Holzer, J.C., Krill, C.E. III, and Johnson, W.L., J. Mater. Res. 7, 1751 (1992).CrossRefGoogle Scholar
15.Eckert, J., Holzer, J.C., Krill, C.E. III, and Johnson, W.L., Mater. Sci. Forum 88–90, 505 (1992).CrossRefGoogle Scholar
16.Gaffet, E., Prog. Mater. Sci. 33, 223 (1989).Google Scholar
17.Iwasa, Y., Arima, T., Fleming, R.M., Siegrist, T., Zhou, O., Haddon, R.C., Rothberg, C.J., Lyons, K.B., Carter, H.L. Jr, Hebard, A.F., Tycko, R., Dabbagh, G., Krajewski, J.J., Thomas, G.A., and Yagi, T., Science 264, 1570 (1997).CrossRefGoogle Scholar
18.Nunez-Regueiro, M., Marques, L., Hodeau, J-L., Bethoux, O., and Perroux, M., Phys. Rev. Lett. 74, 278 (1995).CrossRefGoogle Scholar
19.Blank, V.D., Buga, S.G., Serebryanaya, N.R., Dubitsky, G.A., Sulyanov, S.N., Popov, M.Yu., Denisov, V.N., Ivlev, A.N., and Mavrin, B.N., Phys. Lett. A. 220, 149 (1996).CrossRefGoogle Scholar
20.Rao, A.M., Eklund, P.C., Venkateswaran, U.D., Tucker, J., Duncan, M.A., Bendele, G.M., Stephens, P.W., Hodeau, J.L., Marques, L., Nunez-Regueiro, M., Bashkin, I.O., Ponyatovsky, E.G., and Morovsky, A.P., Appl. Phys. A 64, 231 (1997).CrossRefGoogle Scholar
21.Hermann, H., Schubert, Th., Gruner, W., and Mattern, N., Nanostruct. Mater. 8, 215 (1997).CrossRefGoogle Scholar
22.Tanaka, T., Motoyalna, M., Ishihara, K.N., and Shingu, P.H., Mater. Trans. JIM 36, 276 (1995).CrossRefGoogle Scholar
23.Niwase, K., Tanaka, T., Kakimoto, Y., Ishihara, K.N., and Shingu, P.H., Mater. Trans. JIM 36, 282 (1995).CrossRefGoogle Scholar
24.Zhou, W.L., Ikuhara, Y., Zhao, W., and Tang, J., Carbon 33, 1117 (1995).CrossRefGoogle Scholar
25.Tang, J., Zhao, W., Li, L., Falster, A.U., Simmons, W.B. Jr, Zhou, W.L., Ikuhara, Y., and Zhang, J.H., J. Mater. Res. 11, 733 (1996).CrossRefGoogle Scholar
26.Shen, T.D., Ge, W.Q., Wang, K.Y., Quan, M.X., Wang, J.T., Wei, W.D., and Koch, C.C., Nanostruct. Mater. 7, 393 (1996).CrossRefGoogle Scholar
27.Welham, N.J. and Williams, J.S., Carbon 36, 1309 (1998).CrossRefGoogle Scholar
28.Rao, A.M., Zhou, P., Wang, K-A., Hager, G.T., Holden, J.M., Wang, Y., Lee, W-T., Bi, X-X., Eklund, P.C., Cornett, D.S., Duncan, M.A., and Amster, I.J., Science 259, 955 (1993).CrossRefGoogle Scholar
29.Rao, A.M., Menon, M., Wang, K-A., Eklund, P.C., Subbaswamy, K.R., Cornett, D.S., Duncan, M.A., and Amster, I.J., Chem. Phys. Lett. 224, 106 (1994).CrossRefGoogle Scholar
30.Zhou, P., Dong, Z.H., Rao, A.M., and Eklund, P.C., Chem. Phys. Lett. 211, 337 (1993).CrossRefGoogle Scholar
31.Nguyen, J.H., Kruger, M.B., and Jeanloz, R., Solid State Commun. 88, 719 (1993).CrossRefGoogle Scholar
32.Sundar, C.S., Sahu, P.Ch., Sastry, V.S., Rao, G.V.N, Sridharan, V., Premila, M., Bharathi, A., Hariharan, Y., Radhakrishnan, T.S., Muthu, D.V.S, and Sood, A.K., Phys. Rev. B: Solid State 53, 8180 (1996).CrossRefGoogle Scholar
33.Davydov, V.A., Kashevarova, L.S., Rakhmanina, A.V., Agafonov, V., Ceolin, R., and Szwarc, H., Carbon 35, 735 (1997).CrossRefGoogle Scholar
34.Rao, A.M., Eklund, P.C., Hodeau, J.L., Marques, L., and Nunez-Regueiro, M., Phys. Rev. B: Solid State 55, 4766 (1997).CrossRefGoogle Scholar
35.Ozaki, T., Iwasa, Y., and Mitani, T., Chem. Phys. Lett. 285, 289 (1998).CrossRefGoogle Scholar
36.Goze, C., Rachdi, F., Hajji, L., Nunez Regueiro, M., Marques, L., Hodeau, J-L., and Mehring, M., Phys. Rev. B: Solid State 54, R3676 (1994).CrossRefGoogle Scholar
37.Yamawaki, H., Yoshida, M., Kakudate, Y., Usuba, S., Yokoi, H., Fujiwara, S., Aoki, K., Ruoff, R., Malbotra, R., and Lorents, D., J. Phys. Chem. 97, 11161 (1993).CrossRefGoogle Scholar
38.Dworkin, A., Szwarc, H., Davydov, V.A., Kashevarova, L.S., Rakhmanina, A.V., Agafonov, V., and Ceolin, R., Carbon 35, 745 (1997).CrossRefGoogle Scholar
39.Takahashi, Y., Takada, Y., Kotake, S., Matsumuro, A., and Senoo, M., J. Jpn. Inst. Metals 60, 700 (1996).CrossRefGoogle Scholar
40.Brazhkin, V.V., Lyapin, A.G., Popova, S.V., Klyuev, Yu.A., and Naletov, A.M., J. Appl. Phys. 84, 219 (1998).CrossRefGoogle Scholar
41.Froese, R.D.J and Morokuma, K., Chem. Phys. Lett. 305, 419 (1999).CrossRefGoogle Scholar
42.Sauve, G., Kamat, P.V., Thomas, K.G., Thomsa, K.J., Das, S., and George, M.V., J. Chem. Phys. 100, 2117 (1996).CrossRefGoogle Scholar
43.Zeng, Y., Biczak, L., and Linschitz, H., J. Phys. Chem. 96, 5237 (1992).CrossRefGoogle Scholar
44.Arbogast, J.W., Darmanyan, A.P., Foote, C.S., Rubin, Y., Diederich, F.N., Alvarez, M.M., Anz, S.J., and Whetten, R.L., J. Phys. Chem. 95, 11 (1991).CrossRefGoogle Scholar
45.Masuyama, K., Umemoto, M., Raviprasad, K., Inagaki, T., and Ohi, H., J. Jpn. Soc. Powder Powder Metall. 43, 731 (1996) (in Japanese).CrossRefGoogle Scholar
46.Wang, G.W., Komatsu, K., Murata, Y., and Shiro, M., Nature 387, 583 (1997).CrossRefGoogle Scholar
47.Lebedkin, S., Gromov, A., Giesa, S., Gleiter, R., Renker, B., Rietschel, H., and Kratschmer, W., Chem. Phys. Lett. 285, 210 (1998).CrossRefGoogle Scholar
48.Maurice, D.R. and Courtney, T.H., Metall. Trans. 21A, 289 (1990).CrossRefGoogle Scholar
49.Korobov, M.V. and Sidorov, L.N., J. Chem. Thermodyn. 26, 61 (1994).CrossRefGoogle Scholar