Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-08T02:32:37.964Z Has data issue: false hasContentIssue false

Investigation of the structure and stability of the Pt/SiC(001) interface

Published online by Cambridge University Press:  31 January 2011

V. M. Bermudez
Affiliation:
Naval Research Laboratory, Washington, DC 20375-5000
R. Kaplan
Affiliation:
Naval Research Laboratory, Washington, DC 20375-5000
Get access

Abstract

Auger electron spectroscopy and low energy electron diffraction have been applied to the study of the structure and thermal stability of the Pt/β–SiC(001) interface. The morphology of the interface appears to be governed by the competition among surface diffusion, intermixing, and chemical reaction. An ultrathin Pt layer (8 Å thick) deposited on a substrate at low temperature is laterally uniform with some degree of intermixing across the interface. Brief anneals at 1000 °C result in aggregation of the Pt into islands interspersed with essentially bare SiC. Higher temperatures lead to reaction of the aggregated Pt to form Pt silicide and release free C. The reaction is signaled by characteristic changes in the Si LVV and C KLL Auger line shapes and by the appearance in LEED of a (2 ⊠ 2) pattern (believed to arise from ordered PtSi) and of diffraction rings from oriented polycrystalline graphite. Subsequent deposition of Si and annealing leads to regeneration of SiC by reaction with the free C. These results contrast with those for ultrathin Pt on Si(001) and on α-SiC(0001) which are dominated by the rapid indiffusion of Pt during annealing. A detailed model is presented for the growth and annealing dependence of the Pt/β–SiC(001) interface.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Papanicolaou, N. A., Christou, A., and Gipe, M. L., J. Appl. Phys. 65, 3526 (1989).CrossRefGoogle Scholar
2Chou, T. C., J. Mater. Res. 5, 601 (1990).CrossRefGoogle Scholar
3Anderson, A. B. and Ravimohan, Ch., Phys. Rev. B 38, 974 (1988).CrossRefGoogle Scholar
4Morgen, P., Szymonski, M., Onsgaard, J., Jorgensen, B., and Rossi, G., Surf. Sci. 197, 347 (1988).CrossRefGoogle Scholar
5Rossi, G., Chandesris, D., Roubin, P., and Lecante, J., Phys. Rev. B 34, 7455 (1986).CrossRefGoogle Scholar
6Yang, W. S., Wu, S. C., and Jona, F., Surf. Sci. 169, 383 (1986).CrossRefGoogle Scholar
7Tsang, J. C., Matz, R., Yokota, Y., and Rubloff, G. W., J. Vac. Sci. Technol. A 2, 556 (1984).CrossRefGoogle Scholar
8Matz, R., Purtell, R. J., Yokota, Y., Rubloff, G. W., and Ho, P. S., J. Vac. Sci. Technol. A 2, 253 (1984).CrossRefGoogle Scholar
9Rossi, G., Abbati, I., Braicovich, L., Lindau, I., and Spicer, W. E., Phys. Rev. B 25, 3627 (1982).CrossRefGoogle Scholar
10Crider, C. A., Poate, J. M., Rowe, J. E., and Sheng, T. T., J. Appl. Phys. 52, 2860 (1981).CrossRefGoogle Scholar
11Okada, S., Kishikawa, Y., Oura, K., and Hanawa, T., Surf. Sci. 100, L457 (1980).CrossRefGoogle Scholar
12Rossi, G., Surf. Sci. Repts. 7, 1 (1987).CrossRefGoogle Scholar
13Chen, J-R., Chang, L-D., and Yeh, F-S., J. Vac. Sci. Technol. A 7, 1345 (1989).CrossRefGoogle Scholar
14Bermudez, V. M., Appl. Surf. Sci. 17, 12 (1983).CrossRefGoogle Scholar
15Pai, C. S., Hanson, C. M., and Lau, S. S., J. Appl. Phys. 57, 618 (1985).CrossRefGoogle Scholar
16Slijkerman, W. F. J., Fischer, A. E. M. J., van der Veen, J. F., Ohdomari, I., Yoshida, S., and Misawa, S., J. Appl. Phys. 66, 666 (1989).CrossRefGoogle Scholar
17Höchst, H., Niles, D. W., Zajac, G. W., Fleisch, T. H., Johnson, B. C., and Meese, J. M., J. Vac. Sci. Technol. B 6, 1320 (1988).CrossRefGoogle Scholar
18Bermudez, V. M., Appl. Phys. Letts. 42, 70 (1983).CrossRefGoogle Scholar
19Bermudez, V. M., J. Appl. Phys. 63, 4951 (1988).CrossRefGoogle Scholar
20Kaplan, R., Surf. Sci. 215, 111 (1989).CrossRefGoogle Scholar
21Bermudez, V. M., J. Appl. Phys. 66, 6084 (1989).CrossRefGoogle Scholar
22Powell, J. A., Matus, L. G., and Kuczmarski, M. A., J. Electrochem. Soc. 134, 1558 (1987).CrossRefGoogle Scholar
23Kong, H. S., Wang, Y. C., Glass, J. T., and Davis, R. F., J. Mater. Res. 3, 521 (1988).CrossRefGoogle Scholar
24Zheng, N. J., Knipping, U., Tsong, I. S. T., Petuskey, W. T., Kong, H. S., and Davis, R. F., J. Vac. Sci. Technol. A 6, 696 (1988).CrossRefGoogle Scholar
25Davis, L. E., MacDonald, N. C., Palmberg, P. W., Riach, G. E., and Weber, R. E., Handbook of Auger Electron Spectroscopy, 2nd ed. (Perkin-Elmer Corp., Eden Prairie, MN, 1978).Google Scholar
26Mundschau, M. and Vanselow, R., Surf. Sci. 157, 87 (1985).CrossRefGoogle Scholar
27Roth, J. A. and Crowell, C. R., J. Vac. Sci. Technol. 15, 1317 (1978).CrossRefGoogle Scholar
28Ignatiev, A. S., Mokerov, V. G., Petrova, A. G., Rybin, V. A., and Saraikin, V. V., Zh. Tekh. Fiz. 54, 1212 (1984); English transl.: Sov. Phys. Tech. Phys. 29, 695 (1984).Google Scholar
29Tanuma, S., Powell, C. J., and Penn, D. R., Surf. Interface Anal. 11, 577 (1988); J. Vac. Sci. Technol. A 8, 2213 (1990).CrossRefGoogle Scholar
30Briggs, D. and Seah, M. P., Practical Surface Analysis (Wiley, Chichester, UK, 1983), Chap. 5.Google Scholar
31Argile, C. and Rhead, G. E., Surf. Sci. Repts. 10, 277 (1989).CrossRefGoogle Scholar
32Hasegawa, S., Nakamura, S., Kawamoto, N., Kishibe, H., and Mizokawa, Y., Surf. Sci. 206, L851 (1988).CrossRefGoogle Scholar
33Liehr, M., LeGoues, F. K., Rubloff, G. W., and Ho, P. S., J. Vac. Sci. Technol. A3, 983 (1985).CrossRefGoogle Scholar
34Nakanishi, S., Tokutaka, H., Nishimori, K., Kishida, S., and Ishihara, N., Appl. Surf. Sci. 41/42, 44 (1989).CrossRefGoogle Scholar
35Kaplan, R. and Parrill, T. M., Surf. Sci. 165, L45 (1986).CrossRefGoogle Scholar
36Samsonov, G. V. and Vinitskii, I. M., Handbook of Refractory Compounds (IFI/Plenum, New York, 1980), Chap. II.CrossRefGoogle Scholar
37Crystal Data — Determinative Tables, 3rd ed., Vol. II: Inorganic Compounds, edited by Donnay, J. D. H. and Ondik, H. M. (National Bureau of Standards, Washington, DC, 1973).Google Scholar
38Nemanich, R. J., Sigmon, T. W., Johnson, N. M., Moyer, M. D., and Lau, S. S., in Laser and Electron-Beam Solid Interactions and Materials Processing, edited by Gibbons, J. F., Hess, L. D., and Sigmon, T. W. (North-Holland, New York, 1981), p. 541.Google Scholar
39Bellina, J. J. Jr and Zeller, M. V., in Novel Refractory Semiconductors, edited by Emin, D., Aselage, T. L., and Wood, C. (Mater. Res. Soc. Symp. Proc. 97, Pittsburgh, PA, 1987), p. 265.Google Scholar