Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-08T09:21:56.745Z Has data issue: false hasContentIssue false

Investigation of the sintering pressure and thermal conductivity anisotropy of melt-spun spark-plasma-sintered (Bi,Sb)2Te3 thermoelectric materials

Published online by Cambridge University Press:  05 July 2011

Wenjie Xie
Affiliation:
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China; and Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634-0978
Jian He
Affiliation:
Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634-0978
Song Zhu
Affiliation:
Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634-0978
Tim Holgate
Affiliation:
Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634-0978
Shanyu Wang
Affiliation:
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
Xinfeng Tang*
Affiliation:
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
Qingjie Zhang
Affiliation:
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
Terry M. Tritt*
Affiliation:
Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634-0978
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

A combined melt-spinning and spark-plasma-sintering (SPS) procedure has proven to be effective in preparing high-performance (Bi,Sb)2Te3 thermoelectric (TE) nanocomposites via creating and optimizing their resulting multiscale microstructures. (Bi,Sb)2Te3 possesses a highly anisotropic crystal structure; therefore, it is important to investigate any potential correlation between the SPS conditions, the as-formed microstructures, and the resulting TE properties. In this work, we investigate the correlation between the SPS pressure, the microstructure texture, and the anisotropy of the total thermal conductivity in these melt-spun spark-plasma-sintered (Bi,Sb)2Te3 compounds. The thermal conductivity has been measured in directions that are both perpendicular and parallel to the pressing (or force) direction by rearranging the sample geometry as described in the text. The results show that the anisotropy of thermal conductivity is ∼0, 2–3, 6–7, and 13–15% for the samples sintered at pressures of 20, 30, 45, and 60 MPa, respectively. These results are consistent with an increasing degree of orientation observed by x-ray diffraction and electron microscopy.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Goldsmid, H.J. and Douglas, R.W.: The use of semiconductors in thermoelectric refrigeration. Br. J. Appl. Phys. 5, 386 (1954).CrossRefGoogle Scholar
2.Bell, L.E.: Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321, 1457 (2008).CrossRefGoogle ScholarPubMed
3.Bekebrede, W.R. and Guentert, O.J.: Lattice parameters in the system antimony telluride bismuth telluride. J. Phys. Chem. Solids 23, 1023 (1962).CrossRefGoogle Scholar
4.Greenaway, D.L. and Harbeke, G.: Band structure of bismuth telluride, bismuth selenide and their respective alloys. J. Phys. Chem. Solids 26, 1585 (1965).CrossRefGoogle Scholar
5.Drabble, J.R. and Goodman, C.H.L.: Chemical bonding in bismuth telluride. J. Phys. Chem. Solids 5, 142 (1958).CrossRefGoogle Scholar
6.Delves, R.T., Bowley, A.E., Hazelden, D.W., and Goldsmid, H.J.: Anisotropy of the electrical conductivity in bismuth telluride. Proc. Phys. Soc. 78, 838 (1961).CrossRefGoogle Scholar
7.Testardi, L.R., Bierly, J.N. Jr., and Donahoe, F.J.: Transport properties of p-type Bi2Te3—Sb2Te3 alloys in the temperature range 80–370°K. J. Phys. Chem. Solids 23, 1209 (1962).CrossRefGoogle Scholar
8.Ohsugi, I.J., Kojima, T., Sakata, M., Yamanashi, M., and Nishida, I.A.: Evaluation of anisotropic thermoelectricity of sintered Bi2Te3 on the basis of the orientation distribution of crystallites. J. Appl. Phys. 76, 2235 (1994).CrossRefGoogle Scholar
9.Scherrer, H. and Scherrer, S.: Bismuth telluride, antimony telluride, and their solid solutions, in CRC Handbook of Thermoelectrics, edited by Rowe, D.M. (CRC Press LLC, New York, 1995), p. 229.Google Scholar
10.Poudel, B., Hao, Q., Ma, Y., Lan, Y.C., Minnich, A., Yu, B., Yan, X., Wang, D.Z., Muto, A., Vashaee, D., Chen, X.Y., Liu, J.M., Dresselhaus, M.S., Chen, G., and Ren, Z.F.: High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634 (2008).CrossRefGoogle ScholarPubMed
11.Ma, Y., Hao, Q., Poudel, B., Lan, Y.C., Yu, B., Wang, D.Z., Chen, G., and Ren, Z.F.: Enhanced thermoelectric figure-of-merit in p-type nanostructured bismuth antimony tellurium alloys made from elemental chunks. Nano Lett. 8, 2580 (2008).CrossRefGoogle ScholarPubMed
12.Zhao, X.B., Ji, X.H., Zhang, Y.H., Zhu, T.J., Tu, J.P., and Zhang, X.B.: Bismuth telluride nanotubes and the effects on the thermoelectric properties of nanotube-containing nanocomposites. Appl. Phys. Lett. 86, 062111 (2005).CrossRefGoogle Scholar
13.Cao, Y.Q., Zhao, X.B., Zhu, T.J., Zhang, X.B., and Tu, J.P.: Syntheses and thermoelectric properties of Bi2Te3/Sb2Te3 bulk nanocomposites with laminated nanostructure. Appl. Phys. Lett. 92, 143106 (2008).CrossRefGoogle Scholar
14.Tang, X.F., Xie, W.J., Li, H., Zhao, W.Y., Zhang, Q.J., and Niino, M.: Preparation and thermoelectric transport properties of high-performance p-type Bi2Te3 with layered nanostructure. Appl. Phys. Lett. 90, 012102 (2007).CrossRefGoogle Scholar
15.Xie, W.J., Tang, X.F., Zhang, Q.J., and Tritt, T.M.: High thermoelectric performance BiSbTe alloy with unique low-dimensional structure. J. Appl. Phys. 105, 113713 (2009).CrossRefGoogle Scholar
16.Xie, W.J., Tang, X.F., Zhang, Q.J., and Tritt, T.M.: Unique low-dimensional structure and enhanced thermoelectric performance for P-type Bi0.52Sb1.48Te3 bulk material. Appl. Phys. Lett. 94, 102111 (2009).CrossRefGoogle Scholar
17.Xie, W.J., He, J., Kang, H.J., Tang, X.F., Zhu, S., Laver, M., Wang, S.Y., Copley, J.R.D., Brown, C.M., Zhang, Q.J., and Tritt, T.M.: Identifying the specific nanostructures responsible for the high thermoelectric performance of (Bi, Sb)2Te3 nanocomposites. Nano Lett. 10, 3283 (2010).CrossRefGoogle Scholar
18.Yan, X.A., Poudel, B., Ma, Y., Liu, W.S., Joshi, G., Wang, H., Lan, Y.C., Wang, D.Z., Chen, G., and Ren, Z.F.: Experimental studies on anisotropic thermoelectric properties and structures of n-Type Bi2Te2.7Se0.3. Nano Lett. 10, 3373 (2010).CrossRefGoogle ScholarPubMed
19.Kim, D.H., Kim, C., Heo, S.H., and Kim, H.: Influence of powder morphology on thermoelectric anisotropy of spark-plasma-sintered Bi-Te-based thermoelectric materials. Acta Mater. 59, 405 (2011).CrossRefGoogle Scholar
20.Pope, A.L., Zawilski, B., and Tritt, T.M.: Description of removable sample mount apparatus for rapid thermal conductivity measurements. Cryogenics 41, 725 (2001).CrossRefGoogle Scholar
21.Zhan, G.D., Kuntz, J., Wan, J., Garay, J., and Mukherjee, A.K.: Spark-plasma-sintered BaTiO3/Al2O3 nanocomposites. Mater. Sci. Eng., A 356, 443 (2003).CrossRefGoogle Scholar
22.Nygren, M. and Shen, Z.: Spark plasma sintering: Possibilities and limitations. Key Eng. Mater. 264-268, 719 (2004).CrossRefGoogle Scholar
23.Omori, M.: Sintering, consolidation, reaction and crystal growth by the spark plasma system (SPS). Mater. Sci. Eng., A 287, 183 (2000).CrossRefGoogle Scholar
24.Anselmi-Tamburini, U., Garay, J.E., and Munir, Z.A.: Fast low-temperature consolidation of nanometric ceramic materials. Scr. Mater. 54, 823 (2006).CrossRefGoogle Scholar
25.Liu, W. and Naka, M.: In situ joining of dissimilar nanocrystalline materials by spark plasma sintering. Scr. Mater. 48, 1225 (2003).CrossRefGoogle Scholar
26.Wang, Y.C. and Fu, Z.Y.: Study of temperature field in spark plasma sintering. Mater. Sci. Eng., B 90, 34 (2002).Google Scholar
27.Vanmeensel, K., Laptev, A., Hennicke, J., Vleugels, J., and Van der Biest, O.: Modelling of the temperature distribution during field assisted sintering. Acta Mater. 53, 4379 (2005).CrossRefGoogle Scholar
28.Schmitz, A., Stiewe, C., and Muller, E.: Variations of thermoelectric and mechanical properties of large lead telluride samples produced by a short-term sintering method. J. Electron. Mater. 40, 5, 543546 (2010).CrossRefGoogle Scholar