Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T08:04:30.105Z Has data issue: false hasContentIssue false

Investigation of the crystallization of ZrO2 (Y2O3 3 mol%) nanopowder

Published online by Cambridge University Press:  31 January 2011

Huiwen Liu
Affiliation:
Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
Qunji Xue
Affiliation:
Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
Get access

Abstract

The coprecipitation technique has been used to prepare ZrO2 (Y2O3 3 mol %) nanopowder. The influence of residual NH4Cl and pH value on the crystallization of ZrO2 (Y2O3 3 mol %) nanopowder have been investigated by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), x-ray diffraction (XRD), infrared spectrometry (IR), and transmission electron microscopy (TEM) techniques. The IR spectra proved that the presence of residual NH4Cl increased the amount of the hydroxo group. This led to serious gel agglomerate and free enthalpy decrease. Therefore, the crystallization of ZrO2 (Y2O3 3 mol%) nanopowder is greatly influenced by the residual NH4Cl. While there is no residual NH4Cl, the crystallization takes place at 445 °C and is an exothermic process. On the contrary, with NH4Cl the crystallization takes place at 376 °C and is an endothermic process. However, the pH value does not influence the crystallization of ZrO2 (Y2O3 3 mol%) nanopowder.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Srinivasan, R., Harris, M. B., Simpson, S. F., De Angelis, R. J., and Davis, B. H., J. Mater. Res. 3, 787 (1988).CrossRefGoogle Scholar
2.Sheng, Z. J., Fang, Z. H., Li, T. K., and Ding, Z. S., Annual Report of The State Key Lab. of High Performance Ceramics and Superfine Microstructure (1991), p. 184.Google Scholar
3.Dai, J., Wen, T. L., and Lu, Z. Y., J. Inorg. Mater. 8 (1), 51 (1993).Google Scholar
4.Qiu, H. B., Feng, C. D., and Guo, J. K., J. Inorg. Mater. 8 (2), 156 (1993).Google Scholar
5.Han, L. C., Tang, N. L., and Zhu, X. H., J. Inorg. Mater. 6 (1), 430 (1991).Google Scholar
6.Zhu, X. H., Yang, Z. F., and Li, J. L., Bull. Chinese Silicate Society 6, 1 (1986).Google Scholar
7.Dole, S. L., Seheidecker, P. M., Shires, L. E., and Berard, M. F., Mater. Sci. Eng. 32, 277 (1978).CrossRefGoogle Scholar
8.Blesa, M. A., Maroto, A. J. G., Passaggio, S. I., Figliolia, N. E., and Rigotti, G., J. Mater. Sci. 20, 4601 (1985).CrossRefGoogle Scholar
9.Wen, T. L., Hebert, V., Vilminet, S., and Bernier, J. C., J. Mater. Sci. 26, 3787 (1991).CrossRefGoogle Scholar
10. JCPDS, 7–7 (1974).Google Scholar
11.Jones, S. L. and Norman, C. J., J. Am. Ceram. Soc. 71 (4), C190 (1988).CrossRefGoogle Scholar
12.Farmer, V. C., The IR Spectra of Mineral (Science Publishing House, Beijing, 1982), p. 104.Google Scholar
13.Xu, M. X. and Guo, R. S., J. Inorg. Mater. 5 (1), 49 (1990).Google Scholar
14.Scott, H. G., J. Mater. Sci. 10, 1527 (1975).CrossRefGoogle Scholar