Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-24T20:49:09.619Z Has data issue: false hasContentIssue false

Investigation of defects and nanoparticles with martensitic phase transformation in surface nanostructured 316L stainless steel by slow-positron beam

Published online by Cambridge University Press:  31 January 2011

Gang Liu
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
Long Wei
Affiliation:
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100039, People's Republic of China
Get access

Abstract

In this article, we investigated the defects introduced by surface mechanical attrition treatment by Doppler-broadening spectroscopy of positron annihilation radiation in surface-nanostructured 316L stainless steel. Through the measurement of different thinning layers in the samples treated for 15 min, the slope of line shape parameter S versus wing parameter W curves showed three different values with depth responding to the change of defect configuration. An unusual change of S and W parameters near the surface was mainly from the effect of quantum-dot-like state caused by the formation of nanoparticles. Based on the change of S ˜ W with depth, the martensite phase transformation induced by strain could be estimated to occur within a depth of 35 μm.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Tong, W.P., Tao, N.R., Wang, Z.B., Lu, J., Lu, K.Nitriding iron at lower temperatures. Science 299, 686 (2003)CrossRefGoogle ScholarPubMed
2.Triftshäuser, W., Kögel, G.Defect structures below the surface in metals investigated by monoenergetic positrons. Phys. Rev. Lett. 48, 1741 (1982)CrossRefGoogle Scholar
3.Aruga, A., Takamura, S., Hirose, M., Itoh, Y.Depth profiles of defects in C-ion-irradiated steel determined by a least-squares fit of S parameters from variable-energy positron annihilation. Phys. Rev. B: Condens. Matter 46, 14411 (1992)CrossRefGoogle ScholarPubMed
4.Kooi, B.J., van Veen, A., De Hosson, J.Th.M.Rectangular nanovoids in helium-implanted and thermally annealed MgO(100). Appl. Phys. Lett. 76, (9)1110 (2000)CrossRefGoogle Scholar
5.Wang, X., Wang, J., Xiong, L., Liu, G.Defect characteristics in the surface nanocrystallined material treated by high-energy shot peening. Mater. Sci. Forum 445–446, 210 (2004)CrossRefGoogle Scholar
6.Lu, K., Lu, J.Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment. Mater. Sci. Eng., A 375–377, 38 (2004)CrossRefGoogle Scholar
7.Yu, R.S., Wei, L., Wang, B.Y., Yin, Z.S.An energy filter for slow positron beam using cosine coils. Nucl. Instrum. Methods Phys. Res., Sect. A 457, 419 (2001)CrossRefGoogle Scholar
8.Veen, A.V., Schut, H., de Vries, J., Hakvoort, R.A., Ijpma, M.R.Analysis of positron profiling data by means of “VEPFIT”. AIP Conf. Proc. 218, 171 (1990)CrossRefGoogle Scholar
9.Veen, A.V., Schut, H., Clement, M., Nijs, J.M.M., Kruseman, A., Ijpma, M.R.VEPFIT applied to depth profiling problems. Appl. Surf. Sci. 85, 216 (1995)CrossRefGoogle Scholar
10.Dupasquier, A., Ottaviani, G.Defects profiling by positron beams and other techniquePositron Spectroscopy of Solids (IOS Press 1995)581657Google Scholar
11.Veen, A.V., Kruseman, A.C., Schut, H., Mijnarends, P.E., Kooi, B.J., DeHosson, J.Th.M.Positron analysis of defects in metals. Mater. Sci. Forum 255–257, 76 (1997)CrossRefGoogle Scholar
12.Ni, Z., Wang, X., Wu, E., Liu, G.Martensitic phase transformations in the nanostructured surface layers induced by mechanical attrition treatment. J. Appl. Phys. 98, 114319 (2005)CrossRefGoogle Scholar
13.Nagi, Y., Hassegawa, M., Tang, Z., Hempel, A., Yubuta, K., Shimamura, T., Kawazoe, Y., Kawai, A., Kano, F.Positron confinement in ultrafine embedded particles: Quantum-dot-like state in an Fe-Cu alloy. Phys. Rev. B: Condens. Matter 61, 6574 (2000)CrossRefGoogle Scholar
14.Nagai, Y., Tang, Z., Hasegawa, M., Kanai, T., Saneyasu, M.Irradiation-induced Cu aggregations in Fe: An origin of embrittlement of reactor pressure-vessel steels. Phys. Rev. B: Condens. Matter 63, 134110 (2001)CrossRefGoogle Scholar
15.Nagai, Y., Chiba, T., Tang, Z., Akahane, T., Kanai, T., Hasegawa, M., Takenaka, M., Kuramoto, E.Fermi surface of nanocrystalline embedded particles in materials: Bcc Cu in Fe. Phys. Rev. Lett. 87, 176402 (2001)CrossRefGoogle ScholarPubMed
16.Onitsuka, T., Takenaka, M., Kuramoto, E., Nagai, Y., Hasegawa, M.Deformation-enhanced Cu precipitation in Fe-Cu alloy studied by positron annihilation spectroscopy. Phys. Rev. B: Condens. Matter 65, 012204 (2001)CrossRefGoogle Scholar
17.Puska, M.J., Lanke, P., Nieminen, R.M.Positron affinities for elemental metals. J. Phys. Condens. Matter 1, 6081 (1989)CrossRefGoogle Scholar
18.Nieminen, R.M.Electronic structure and positron spectroscopy of solids and surfacesPositron Spectroscopy of Solids (IOS Press 1995)443489Google Scholar