Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T18:52:58.878Z Has data issue: false hasContentIssue false

Investigating point defects in irradiated boron-doped diamond films by temperature-dependent electrical properties and scanning tunneling microscopy and spectroscopy

Published online by Cambridge University Press:  31 January 2011

Sanju Gupta*
Affiliation:
Department of Physics, C.so Duca degli Abruzzi 24, Politecnico di Torino, Italy 10129; and Missouri University Research Reactor, University of Missouri-Columbia, Columbia, Missouri 65211
John Farmer
Affiliation:
Missouri University Research Reactor, and Department of Physics, University of Missouri–Columbia, Columbia, Missouri 65211
Renato Gonnelli
Affiliation:
Department of Physics, C.so Duca degli Abruzzi 24, Politecnico di Torino, Italy 10129
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We report temperature-dependent electrical resistivity (or dc conductivity, σdc) down to 4 K for pristine and gamma-irradiated microwave plasma-assisted chemical vapor-deposited boron-doped diamond films with [B]/[C]gas = 4000 ppm to gain insights into the nature of conduction mechanism, distribution, and kinetics of point defects generated due to gamma irradiation prompted by the article [Gupta et al., J. Mater. Res.24, 1498 (2009)]. The pristine samples exhibit typical metallic conduction up to 50 K and with reduction in temperature to 25 K, the σdc decreases monotonically followed by saturation at 4 K, suggesting “disordered” metal or “localized” behavior. For irradiated films, continuous increasing resistivity with decreasing temperature demonstrates semiconducting behavior with thermal activation/hopping conduction phenomena. It is intriguing to propose that irradiation leads to substantial hydrogen redistribution leading to unexpected low-temperature resistivity behavior. Scanning tunneling microscopy/spectroscopy helped to illustrate local grain and grain boundary effects.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.May, P.W.The new diamond age? Science 319, 1490 (2008)CrossRefGoogle ScholarPubMed
2.Kohn, E., Gluche, P., Adamschik, M.Diamond MEMS—A new emerging technology Diamond Relat. Mater. 8, 934 (1999)CrossRefGoogle Scholar
3.Aleksov, A., Kubovic, M., Kaeb, N., Spitzberg, U., Bergmaier, A., Dollinger, G., Bauer, Th., Schreck, M., Stritzker, B., Kohn, E.Diamond field effect transistors—Concepts and challenges Diamond Relat. Mater. 12, 391 (2003)CrossRefGoogle Scholar
4.Fischer, A.E., Show, Y., Swain, G.M.Electrochemical performance of diamond thin-film electrodes from different commercial sources Anal. Chem. 76, 2553 (2004)CrossRefGoogle ScholarPubMed
5.Grekhov, I.V., Mesyats, G.A.Nanosecond semiconductor diodes for pulsed power switching Phs. Usp. 48, 703 (2005)CrossRefGoogle Scholar
6.Koizumi, S., Watanabe, K., Hasegawa, M., Kanda, H.Ultraviolet emission from a diamond pn junction Science 292, 1899 (2001)CrossRefGoogle ScholarPubMed
7.Liao, M.Y., Koide, Y., Alvarez, J.High-performance metal-semiconductor-metal deep-ultraviolet photodetectors based on homoepitaxial diamond thin film Appl. Phys. Lett. 88, 0335041 (2006)Google Scholar
8.Collins, A.T.The Properties and Growth of Diamond edited by G. Davies (Inspec, London 1994)Google Scholar
9.Kobashi, K.Diamond Films: Chemical Vapor Deposition for Oriented and Heteroepitaxial Growth (Elsevier, Amesterdam 2005)Google Scholar
10.Kalish, R.Properties of Diamond edited by G. Davies (INSPEC 1994) Chap. 6.Google Scholar
11.Gupta, S., Katiyar, R.S., Gilbert, D.R., Singh, R.K., Morell, G.Microstructural studies of diamond thin films grown by electron cyclotron resonance-assisted chemical vapor deposition J. Appl. Phys. 88, 5695 (2000)CrossRefGoogle Scholar
12.Garrido, J.A., Nebel, C.E., Stutzmann, M., Gheeraert, E., Casanova, N., Bustarret, E., Deneuville, A.A new acceptor state in CVD-diamond Diamond Relat. Mater. 11, 347 (2002)CrossRefGoogle Scholar
13.Kalish, R.The search for donors in diamond Diamond Relat. Mater. 10, 1749 (2001)CrossRefGoogle Scholar
14.Isberg, J., Hammersberg, J., Johansson, E., Wikström, T., Twitchen, D.J., Whitehead, A.J., Coe, S.E., Scarsbrook, G.A.High carrier mobility in single-crystal plasma-deposited diamond Science 297, 1670 (2003)CrossRefGoogle Scholar
15.Gupta, S., Weiner, B.R., Morell, G.Synthesis and characterization of sulfur-incorporated microcrystalline diamond and nanocrystalline carbon thin films by hot filament chemical vapor deposition J. Mater. Res. 18, 363 (2003)CrossRefGoogle Scholar
16.Williams, A.W.S., Lightowlers, E.C., Collins, A.T.Impurity conduction in synthetic semiconducting diamond J. Phys. C: Solid State Phys. 3, 1727 (1970)CrossRefGoogle Scholar
17.Bustarret, E., Gheeraert, E., Watanabe, K.Optical and electronic properties of heavily boron-doped homo-epitaxial diamond Phys. Status Solidi A 199, 9 (2003)CrossRefGoogle Scholar
18.Fischer, A.E., Show, Y., Swain, G.M.Electrochemical performance of diamond thin-film electrodes from different commercial sources Anal. Chem. 76, 2553 (2004)CrossRefGoogle ScholarPubMed
19.Mareš, J.J., Hubík, P., Krištofik, J., Nesladek, M.Selected topics related to the transport and superconductivity in boron-doped diamond Sci. Technol. Adv. Mater. 9, 044101 (2008)CrossRefGoogle Scholar
20.Gajewski, W., Achatz, P., Williams, O.A., Haenen, K., Bustarret, E., Stutzmann, M., Garrido, J.A.Electronic and optical properties of boron-doped nanocrystalline diamond films Phys. Rev. B: Condens. Matter 79, 045206 (2009)CrossRefGoogle Scholar
21.Kalish, R., Uzan-Saguy, C., Philosoph, B., Richter, V.Loss of electrical conductivity in boron-doped diamond due to ion-induced damage Appl. Phys. Lett. 70, 999 (1997)CrossRefGoogle Scholar
22.Polyakov, I., Rukovishnikov, A.I., Garin, B.M., Avdeeva, L.A., Heidinger, R., Parshin, V.V., Ralchenko, V.G.Electrically active defects, conductivity, and millimeter wave dielectric loss in CVD diamonds Diam. and Relat. Mater. 14, 604 (2005)CrossRefGoogle Scholar
23.Gupta, S., Muralikiran, M., Farmer, J., Cao, L.R., Downing, R.G.The effect of boron doping and gamma irradiation on the structure and properties of microwave chemical vapor deposited boron-doped diamond films J. Mater. Res. 24, 1498 (2009)CrossRefGoogle Scholar
24.Milazzo, L., Mainwood, A.Modeling of diamond radiation detectors J. Appl. Phys. 96, 5845 (2004)CrossRefGoogle Scholar
25.Gonon, P., Prawer, S., Jamieson, D.N., Nugent, K.W.Radiation hardness of polycrystalline diamond Diamond Relat. Mater. 6, 314 (1997)CrossRefGoogle Scholar
26.Bruzzi, M., Miglio, S., Pirollo, S., Sciortino, S.Electrical properties and defect analysis of neutron irradiated undoped CVD diamond films Diamond Relat. Mater. 10, 601 (2001)CrossRefGoogle Scholar
27.Gupta, S., Weiss, B.L., Weiner, B.R., Pilione, L., Badzian, A., Morell, G.Electron field emission properties of gamma irradiated microcrystalline diamond and nanocrystalline carbon thin films J. Appl. Phys. 92, 3311 (2002)CrossRefGoogle Scholar
28.Gupta, S., Williams, O.A., Bohannan, E.Electrostatic force microscopy studies of boron-doped diamond films J. Mater. Res. 22, 3014 (2007)CrossRefGoogle Scholar
29.Bennett, J.A., Wang, J., Show, Y., Swain, G.M.Effect of sp2-bonded nondiamond carbon impurity on the response of boron-doped polycrystalline diamond thin-film electrodes J. Electrochem. Soc. 151, E306 (2004)CrossRefGoogle Scholar
30.Prawer, S., Nemanich, R.J.Raman spectroscopy of diamond and doped diamond Proc. R. Soc. London, Ser. A 362, 2537 (2004)Google ScholarPubMed
31.Ager, J.W. III, Walukiewicz, W., McMluskey, M., Plano, M.A., Landstrass, M.I.Fano interference of the Raman phonon in heavily boron-doped diamond films grown by chemical vapor deposition Appl. Phys. Lett. 66, 616 (1995)CrossRefGoogle Scholar
32.Gupta, S., Dudipala, A., Williams, O.A., Haenen, K., Bohannan, E.Ex situ variable angle spectroscopic ellipsometry studies on chemical vapor deposited boron-doped diamond films: Layered structure and modeling aspects J. Appl. Phys. 104, 073514 (2008)CrossRefGoogle Scholar
33.Bernard, M., Baron, C., Deneuville, A.About the origin of the low wave number structures of the Raman spectra of heavily boron doped diamond films Diamond Relat. Mater. 13, 896 (2004)CrossRefGoogle Scholar
34.Privitera, V., Schroer, E., Priolo, F., Napolitani, E., Carnera, A.Electrical behavior of ultra-low energy implanted boron in silicon J. Appl. Phys. 88, 1299 (2000)CrossRefGoogle Scholar
35.Ushizawa, K., Watanabe, K., Ando, T., Sakaguchi, I., Nishitani-Gamo, M., Sato, Y., Kanda, H.Boron concentration dependence of Raman spectra on {100} and {111} facets of B-doped CVD diamond Diamond Relat. Mater. 7, 1719 (1998)CrossRefGoogle Scholar
36.Pruvost, P., Bustarret, E., Deneuville, A.Characteristics of homoepitaxial heavily boron-doped diamond films from their Raman spectra Diamond Relat. Mater. 9, 295 (2000)CrossRefGoogle Scholar
37.Pruvost, P., Deneuville, A.Analysis of the Fano in diamond Diamond Relat. Mater. 10, 531 (2001)CrossRefGoogle Scholar
38.Fano, U.Effects of configuration interaction on intensities and phase shifts Phys. Rev. 124, 1886 (1961)CrossRefGoogle Scholar
39.Nashimura, K., Das, K., Glass, J.T.Material and electrical characterization of polycrystalline boron-doped diamond films grown by microwave plasma chemical vapor deposition J. Appl. Phys. 69, 3142 (1991)CrossRefGoogle Scholar
40.Shinar, R., Leksono, M., Shanks, H.R.Effect of boron doping on the surfaces of diamond thin films J. Vac. Sci. Technol., A 11, 569 (1993)CrossRefGoogle Scholar
41.Kaukonen, M., Sitch, P.K., Jungnickel, G., Nieminen, R.M., Sami Pöykkö, D., Porezag, D., Frauenheim, Th.Effect of N and B doping on the growth of CVD diamond (100):H(2×1) surfaces Phys. Rev. B: Condens. Matter 57, 9965 (1998)CrossRefGoogle Scholar
42.Kalish, R.The search for donors in diamond Diamond Relat. Mater. 10, 1749 (2001)CrossRefGoogle Scholar
43.Newton, M.E., Campbell, B.A., Twitchen, D.J.Recombination-enhanced diffusion of self-interstitial atoms and vacancy–interstitial recombination in diamond Diamond Relat. Mater. 11, 618 (2002)CrossRefGoogle Scholar
44.Walker, J.Optical absorption and luminescence in diamond Rep. Prog. Phys. 42, 1605 (1979)CrossRefGoogle Scholar
45.Edwards, P.D., Sienko, M.J.Universality aspects of the metal-nonmetal transition in condensed media Phys. Rev. B: Condens. Matter 17, 2575 (1978)CrossRefGoogle Scholar
46.Mott, N.F.Metal-insulator transition Rev. Mod. Phys. 40, 677 (1968)CrossRefGoogle Scholar
47.Sato, T., Ohashi, K., Sugai, H., Sumi, T., Haruna, K., Maeta, H., Matsumoto, N., Otsuka, H.Transport of heavily boron-doped synthetic semiconductor diamond in the hopping regime Phys. Rev. B: Condens. Matter 61, 12970 (2000)CrossRefGoogle Scholar
48.Takano, Y., Nagao, M., Sakaguchi, I., Tachiki, M., Hatano, T., Kobayashi, K., Umezawa, H., Kawarada, H.Superconductivity in diamond thin films well above liquid helium temperature Appl. Phys. Lett. 85, 2851 (2004)CrossRefGoogle Scholar
49.Bustarret, E., Gheeraert, E., Watanabe, K.Optical and electronic properties of heavily boron-doped homo-epitaxial diamond Phys. Status Solidi A 199, 9 (2003)CrossRefGoogle Scholar
50.Piccirillo, C., Davies, G., Mainwood, A., Penchina, C.M.Investigation on boron-doped CVD samples Diamond Relat. Mater. 11, 338 (2002)CrossRefGoogle Scholar
51.Anderson, P.W.Absence of diffusion in certain random lattices Phys. Rev. 109, 1492 (1958)CrossRefGoogle Scholar
52.Mott, N.F.Metal Insulator Transitions (Taylor and Francis, London, 1974). N.F. Mott and E.A. Davis: Electronic Processes in Non-Crystalline Materials, 2nd Ed (Clarendon Press, Oxford 1979)Google Scholar
53.Hubbard, J.Electron correlations in narrow energy bands. II. The degenerate band case Proc. R. Soc. London, Ser. A 277, 237 (1964)Google Scholar
54.Schmid, A.On the dynamics of electrons in an impure metal Z. Phys. 271, 251 (1974)CrossRefGoogle Scholar
55.Knox, R.S.Theory of Excitons edited by S. Amelinckx (Academic, New York 1963)Google Scholar
56.Massarani, B., Bourgoin, J.C., Chrenko, R.M.Hopping conduction in semiconducting diamond Phys. Rev. B: Condens. Matter 17, 1758 (1978)CrossRefGoogle Scholar
57.Reznik, A., Uzan-Saguy, C., Kalish, R.Effects of point defects on the electrical properties of doped diamond Diamond Relat. Mater. 9, 1051 (2000)CrossRefGoogle Scholar
58.Ambegaokar, V., Halperin, B.I., Langer, J.S.Hopping conductivity in disordered systems Phys. Rev. B: Condens. Matter 4, 2612 (1971)CrossRefGoogle Scholar
59.Nishizaki, T., Takanao, Y., Nagao, M., Takenouchhi, T., Kawarada, H., Kobayashi, N.Low-temperature STM/STS studies on boron-doped (1 1 1) diamond films J. Phys. Chem. Solids 69, 3027 (2008)CrossRefGoogle Scholar
60.Perez, J.M., Lin, C., Rivera, W., Hyer, R.C., Green, M., Sharma, S.C., Chopra, D.R., Chourasia, A.R.Scanning tunneling microscopy of the electronic structure of chemical vapor deposited diamond films Appl. Phys. Lett. 62, 1889 (1993)CrossRefGoogle Scholar