Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-28T13:39:34.613Z Has data issue: false hasContentIssue false

Introduction

Published online by Cambridge University Press:  27 March 2013

Cengiz S. Ozkan
Affiliation:
University of California–Riverside, Riverside, California 92521-0001
Markus J. Buehler*
Affiliation:
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4301
Nicola M. Pugno
Affiliation:
Università di Trento, I-38123 Trento, Italy
Kang Wang
Affiliation:
University of California–Los Angeles, Los Angeles, California 90095-0001
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Focus Issue Introduction
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Geim, A.K. and Novoselov, K.S.: The rise of graphene. Nat. Mater. 6(3), 183191 (2007).CrossRefGoogle ScholarPubMed
Saito, R., Fujita, M., Dresselhaus, G., and Dresselhaus, M.S.: Electronic-structure of graphene tubules based on C-60. Phys. Rev. B 46(3), 18041811 (1992).CrossRefGoogle Scholar
Saito, R., Fujita, M., Dresselhaus, G., and Dresselhaus, M.S.: Electronic-structure of chiral graphene tubules. Appl. Phys. Lett. 60(18), 22042206 (1992).CrossRefGoogle Scholar
Pugno, N.M.: Graded cross-links for stronger nanomaterials. Mater. Today 13(3), 4043 (2010).CrossRefGoogle Scholar
Pugno, N.M.: The design of self-collapsed super-strong nanotube bundles. J. Mech. Phys. Solids 58(9), 13971410 (2010).CrossRefGoogle Scholar
Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., and Firsov, A.A.: Two-dimensional gas of massless Dirac fermions in graphene. Nature 438(7065), 197200 (2005).CrossRefGoogle ScholarPubMed
Chen, J.H., Jang, C., Xiao, S., Ishigami, M., and Fuhrer, M.S.: Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat. Nanotechnol. 3(4), 206209 (2008).CrossRefGoogle ScholarPubMed
Paul, R.K., Ghazinejad, M., Penchev, M., Lin, J., Ozkan, M., and Ozkan, C.S.: Synthesis of a pillared graphene nanostructure: A counterpart of three-dimensional carbon architectures. Small 6(20), 23092313 (2010).CrossRefGoogle ScholarPubMed
Guo, S., Ghazinejad, M., Qin, X., Sun, H., Wang, W., Zaera, F., Ozkan, M., and Ozkan, C.S.: Tuning electron transport in graphene-based field-effect devices using block co-polymers. Small 8(7), 10731080 (2012).CrossRefGoogle ScholarPubMed
Gilje, S., Han, S., Wang, M., Wang, K.L., and Kaner, R.B.: A chemical route to graphene for device applications. Nano Lett. 7(11), 33943398 (2007).CrossRefGoogle ScholarPubMed
Liao, L., Lin, Y.C., Bao, M., Cheng, R., Bai, J., Liu, Y., Qu, Y., Wang, K.L., Huang, Y., and Duan, X.: High-speed graphene transistors with a self-aligned nanowire gate. Nature 467(7313), 305308 (2010).CrossRefGoogle ScholarPubMed
Kim, K.S., Zhao, Y., Jang, H., Lee, S.Y., Kim, J.M., Kim, K.S., Ahn, J.H., Kim, P., Choi, J.Y., and Hong, B.H.: Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457(7230), 706710 (2009).CrossRefGoogle ScholarPubMed
Hirsch, A.: The era of carbon allotropes. Nat. Mater. 9(11), 868871 (2010).CrossRefGoogle ScholarPubMed
Cranford, S.W. and Buehler, M.J.: Mechanical properties of graphyne. Carbon 49(13), 41114121 (2011).CrossRefGoogle Scholar
Cranford, S.W., Brommer, D.B., and Buehler, M.J.: Extended graphynes: Simple scaling laws for stiffness, strength and fracture. Nanoscale 4(24), 77977809 (2012).CrossRefGoogle ScholarPubMed
Ivanovskii, A.L.: Graphynes and graphdyines. Prog. Solid State Chem. (2012) In Press.Google Scholar
Buehler, M.J.: Materials by design–A perspective from atoms to structures. MRS Bull. 38(2), 169176 (2013), doi: 10.1557/mrs.2013.26.CrossRefGoogle ScholarPubMed
Zang, J., Ryu, S., Pugno, N., Wang, Q., Tu, Q., Buehler, M.J., and Zhao, X.: Multifunctionality and control of the crumpling and unfolding of large-area graphene. Nat. Mater. (2013), doi: 10.1038/NMAT3542.Google ScholarPubMed
Pugno, N.M.: The role of defects in the design of space elevator cable: From nanotube to megatube. Acta Mater. 55(15), 52695279 (2007).CrossRefGoogle Scholar
Buehler, M.J.: Strength in numbers. Nat. Nanotechnol. 5(3), 172174 (2010).CrossRefGoogle ScholarPubMed
Pop, E., Varshney, V., and Roy, A.K.: Thermal properties of graphene: Fundamentals and applications. MRS Bull. 37, 12731281 (2012).CrossRefGoogle Scholar
Lin, J., Penchev, M., Wang, G., Paul, R.K., Zhong, J., Jing, X., Ozkan, M., and Ozkan, C.S.: Heterogeneous graphene nanostructures: ZnO nanostructures grown on large-area graphene layers. Small 6(21), 24482452, November 5, 2010.CrossRefGoogle ScholarPubMed
Ravindran, S., Andavan, G.T., and Ozkan, C.S.: Selective and controlled self-assembly of zinc oxide hollow spheres on bundles of single-walled carbon nanotube templates. Nanotechnology 17, 723727 (2006).CrossRefGoogle Scholar
Wang, W., Guo, S., Penchev, M., Ruiz, I., Bozhilov, K., Yan, D., Ozkan, M., and Ozkan, C.S.: Three dimensional few layer graphene and carbon nanotube foam architectures for high fidelity supercapacitors. Nano Energy, http://dx.doi.org/10.1016/j.nanoen.2012.10.001, 2012.Google Scholar
Gao, H., Kong, Y., Cui, D., and Ozkan, C.S.: Spontaneous insertion of DNA oligonucleotides into carbon nanotubes. Nano Lett. 3(4), 471473 (2003).CrossRefGoogle Scholar
Wang, X., Liu, F., Andavan, G.T., Jing, X., Singh, K., Yazdanpanah, V.R., Bruque, N., Pandey, R.R., Lake, R., Ozkan, M., Wang, K.L., and Ozkan, C.S.: Carbon nanotube–DNA nanoarchitectures and electronic functionality. Small 2(11), 13561365 (2006).CrossRefGoogle ScholarPubMed
Ravindran, S., Chaudhary, S., Colburn, B., Ozkan, M., and Ozkan, C.S.: Covalent coupling of quantum dots to multiwalled carbon nanotubes for electronic device applications. Nano Lett. 3(4), 447453 (2003).CrossRefGoogle Scholar
Cui, D., Tian, F., Ozkan, C.S., Wang, M., and Gao, H.: Effect of single wall carbon nanotubes on human HEK293 cells. Toxicol. Lett. 155(1), 7385 (2005).CrossRefGoogle ScholarPubMed
Galatsis, K., Wang, K.L., Ozkan, M., Ozkan, C.S., Huang, Y., Chang, J.P., Monbouquette, H.G., Chen, Y., Nealey, P., and Botros, Y.: Patterning and templating for nanoelectronics. Adv. Mater. 22(6), 769778 (2010).CrossRefGoogle ScholarPubMed
Lin, J., Teweldebrhan, D., Ashraf, K., Liu, G., Jing, X., Yan, Z., Li, R., Ozkan, M., Lake, R.K., Balandin, A.A., and Ozkan, C.S.: Gating of single-layer graphene with single-stranded deoxyribonucleic acids. Small 6(10), 11501155 (2010).CrossRefGoogle ScholarPubMed