Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T01:36:04.223Z Has data issue: false hasContentIssue false

Interpreting the ductility of nanocrystalline metals1

Published online by Cambridge University Press:  29 May 2013

John A. Sharon
Affiliation:
Materials Science and Engineering Center, Sandia National Laboratories, Albuquerque, New Mexico, 87123
Henry A. Padilla II
Affiliation:
Materials Science and Engineering Center, Sandia National Laboratories, Albuquerque, New Mexico, 87123
Brad L. Boyce*
Affiliation:
Materials Science and Engineering Center, Sandia National Laboratories, Albuquerque, New Mexico, 87123
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Nanocrystalline (NC) metals are known for having excellent strength but perceived to have poor ductility. Miniature tensile tests on NC Ni–Fe measured ultimate strengths of 2 GPa and elongations, by digital image correlation, of up to 10%. Detailed examination of the fracture surface revealed dimpled rupture and cross-section reduction up to 75%, suggesting an intrinsic ability for small grained Ni–Fe to accommodate plasticity. A survey of published studies on NC metals reveals that this behavior is quite common; despite low macroscopic elongation, NC metals often achieve extensive deformation suggesting good intrinsic ductility. Unfortunately, the common sheet-like configuration of NC tensile specimens muddies a simple evaluation of ductility based on elongation, since thin and wide geometries promote localized necking that expedites catastrophic failure. This paper presents a compact review of ductility concepts and literature to interpret the experimental ductility measurements of an electrodeposited nickel alloy.

Type
Invited Feature Paper
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

This work of authorship was prepared as an account of work sponsored by an agency of the United States Government. Accordingly, the United States Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so for United States Government purposes. Neither Sandia Corporation, the United States Government, nor any agency thereof, nor any of their employees make any warranty, express or imply, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by Sandia Corporation, the United States Government, or any agency thereof. The views and opinions expressed herein do not necessarily state or reflect those of Sandia Corporation, the United States Government or any agency thereof.

References

REFERENCES

Hall, E.O.: The deformation and ageing of mild steel .3. Discussion of results. Proc. Phys. Soc. London, Sect. B 64(381), 747 (1951).CrossRefGoogle Scholar
Petch, N.J.: The cleavage strength of polycrystals. J. Iron. Steel Res. Int. 174(1), 25 (1953).Google Scholar
Meyers, M.A., Mishra, A., and Benson, D.J.: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51(4), 427 (2006).CrossRefGoogle Scholar
Jonnalagadda, K., Chasiotis, I., Yagnamurthy, S., Lambros, J., Pulskamp, J., Polcawich, R., and Dubey, M.: Experimental investigation of strain rate dependence of nanocrystalline Pt films. Exp. Mech. 50(1), 25 (2010).CrossRefGoogle Scholar
Jonnalagadda, K., Karanjgaokar, N., Chasiotis, I., Chee, J., and Peroulis, D.: Strain rate sensitivity of nanocrystalline Au films at room temperature. Acta Mater. 58(14), 4674 (2010).CrossRefGoogle Scholar
Sanders, P.G., Eastman, J.A., and Weertman, J.R.: Elastic and tensile behavior of nanocrystalline copper and palladium. Acta Mater. 45(10), 4019 (1997).CrossRefGoogle Scholar
Nieman, G.W., Weertman, J.R., and Siegel, R.W.: Mechanical behavior of nanocrystalline Cu and Pd. J. Mater. Res. 6(5), 1012 (1991).CrossRefGoogle Scholar
Tsuji, N., Ito, Y., Saito, Y., and Minamino, Y.: Strength and ductility of ultrafine grained aluminum and iron produced by arb and annealing. Scr. Mater. 47(12), 893 (2002).CrossRefGoogle Scholar
Youssef, K.M., Scattergood, R.O., Murty, K.L., Horton, J.A., and Koch, C.C.: Ultrahigh strength and high ductility of bulk nanocrystalline copper. Appl. Phys. Lett. 87(9), 091904-1091904-3 (2005).CrossRefGoogle Scholar
Shen, Y.F., Lu, L., Lu, Q.H., Jin, Z.H., and Lu, K.: Tensile properties of copper with nano-scale twins. Scr. Mater. 52(10), 989 (2005).CrossRefGoogle Scholar
Wang, Y.M., Hamza, A.V., and Ma, E.: Temperature-dependent strain rate sensitivity and activation volume of nanocrystalline Ni. Acta Mater. 54(10), 2715 (2006).CrossRefGoogle Scholar
Legros, M., Elliott, B.R., Rittner, M.N., Weertman, J.R., and Hemker, K.J.: Microsample tensile testing of nanocrystalline metals. Philos. Mag. A 80(4), 1017 (2000).CrossRefGoogle Scholar
Buchheit, T.E., Goods, S.H., Kotula, P.G., and Hlava, P.F.: Electrodeposited 80ni-20fe (permalloy) as a structural material for high aspect ratio microfabrication. Mater. Sci. Eng., A 432(1–2), 149 (2006).CrossRefGoogle Scholar
Gu, C., Lian, J., Jiang, Z., and Jiang, Q.: Enhanced tensile ductility in an electrodeposited nanocrystalline Ni. Scr. Mater. 54(4), 579 (2006).CrossRefGoogle Scholar
Schwaiger, R., Moser, B., Dao, M., Chollacoop, N., and Suresh, S.: Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel. Acta Mater. 51(17), 5159 (2003).CrossRefGoogle Scholar
Li, H. and Ebrahimi, F.: Tensile behavior of a nanocrystalline ni-fe alloy. Acta Mater. 54(10), 2877 (2006).CrossRefGoogle Scholar
Wang, N., Wang, Z.R., Aust, K.T., and Erb, U.: Room temperature creep behavior of nanocrystalline nickel produced by an electrodeposition technique. Mater. Sci. Eng., A 237(2), 150 (1997).CrossRefGoogle Scholar
Dalla Torre, F., Spatig, P., Schaublin, R., and Victoria, M.: Deformation behaviour and microstructure of nanocrystalline electrodeposited and high pressure torsioned nickel. Acta Mater. 53(8), 2337 (2005).CrossRefGoogle Scholar
Dalla Torre, F., Van Swygenhoven, H., and Victoria, M.: Nanocrystalline electrodeposited Ni: Microstructure and tensile properties. Acta Mater. 50(15), 3957 (2002).CrossRefGoogle Scholar
Brooks, I., Palumbo, G., Hibbard, G.D., Wang, Z., and Erb, U.: On the intrinsic ductility of electrodeposited nanocrystalline metals. J. Mater. Sci. 46(24), 7713 (2011).CrossRefGoogle Scholar
Zhang, H., Jiang, Z., Lian, H., and Jiang, Q.: Strain rate dependence of tensile ductility in an electrodeposited Cu with ultrafine grain size. Mater. Sci. Eng., A 479(1–2), 136 (2008).CrossRefGoogle Scholar
Gianola, D.S., Van Petegem, S., Legros, M., Brandstetter, S., Van Swygenhoven, H., and Hemker, K.J.: Stress-assisted discontinuous grain growth and its effect on the deformation behavior of nanocrystalline aluminum thin films. Acta Mater. 54(8), 2253 (2006).CrossRefGoogle Scholar
Fan, G.J., Fu, L.F., Qiao, D.C., Choo, H., Liaw, P.K., and Browning, N.D.: Grain growth in a bulk nanocrystalline Co alloy during tensile plastic deformation. Scr. Mater. 54(12), 2137 (2006).CrossRefGoogle Scholar
Sharon, J.A., Su, P.C., Prinz, F.B., and Hemker, K.J.: Stress-driven grain growth in nanocrystalline Pt thin films. Scr. Mater. 64(1), 25 (2011).CrossRefGoogle Scholar
Wang, Y.M., Ma, E., and Chen, M.W.: Enhanced tensile ductility and toughness in nanostructured Cu. Appl. Phys. Lett. 80(13), 2395 (2002).CrossRefGoogle Scholar
Krasilnikov, N., Lojkowski, W., Pakiela, Z., and Valiev, R.: Tensile strength and ductility of ultra-fine-grained nickel processed by severe plastic deformation. Mater. Sci. Eng., A 397(1–2), 330 (2005).CrossRefGoogle Scholar
Tellkamp, V.L., Melmed, A., and Lavernia, E.J.: Mechanical behavior and microstructure of a thermally stable bulk nanostructured Al alloy. Metall. Mater. Trans. A 32(9), 2335 (2001).CrossRefGoogle Scholar
Lu, L., Shen, Y.F., Chen, X.H., Qian, L.H., and Lu, K.: Ultrahigh strength and high electrical conductivity in copper. Science 304(5669), 422 (2004).CrossRefGoogle ScholarPubMed
Wu, X.J., Du, L.G., Zhang, H.F., Liu, J.F., Zhou, Y.S., Li, Z.Q., Xiong, L.Y., and Bai, Y.L.: Synthesis and tensile property of nanocrystalline metal copper. Nanostruct. Mater. 12(1–4), 221 (1999).CrossRefGoogle Scholar
Conrad, H. and Yang, D.: Effect of an electric field on the plastic deformation kinetics of electrodeposited Cu at low and intermediate temperatures. Acta Mater. 50(11), 2851 (2002).CrossRefGoogle Scholar
Karimpoor, A.A., Erb, U., Aust, K.T., and Palumbo, G.: High strength nanocrystalline cobalt with high tensile ductility. Scr. Mater. 49(7), 651 (2003).CrossRefGoogle Scholar
Guduru, R.K., Murty, K.L., Youssef, K.M., Scattergood, R.O., and Koch, C.C.: Mechanical behavior of nanocrystalline copper. Mater. Sci. Eng., A 463(1–2), 14 (2007).CrossRefGoogle Scholar
Cheng, S., Ma, E., Wang, Y.M., Kecskes, L.J., Youssef, K.M., Koch, C.C., Trociewitz, U.P., and Han, K.: Tensile properties of in situ consolidated nanocrystalline Cu. Acta Mater. 53(5), 1521 (2005).CrossRefGoogle Scholar
Valiev, R.Z., Alexandrov, I.V., Zhu, Y.T., and Lowe, T.C.: Paradox of strength and ductility in metals processed by severe plastic deformation. J. Mater. Res. 17(1), 5 (2002).CrossRefGoogle Scholar
Zhao, Y.H., Guo, Y.Z., Wei, Q., Dangelewiez, A.M., Zhu, Y.T., Langdon, T.G., Zhou, Y.Z., Lavernia, E.J., and Xu, C.: Influence of specimen dimensions on the tensile behavior of ultrafine-grained Cu. Scr. Mater. 59(6), 627 (2008).CrossRefGoogle Scholar
Stolyarov, V.V., Zhu, Y.T., Alexandrov, I.V., Lowe, T.C., and Valiev, R.Z.: Influence of ECAP routes on the microstructure and properties of pure Ti. Mater. Sci. Eng., A 299(1–2), 59 (2001).CrossRefGoogle Scholar
Wang, Y.M. and Ma, E.: Temperature and strain rate effects on the strength and ductility of nanostructured copper. Appl. Phys. Lett. 83(15), 3165 (2003).CrossRefGoogle Scholar
Koch, C.C.: Optimization of strength and ductility in nanocrystalline and ultrafine grained metals. Scr. Mater. 49(7), 657 (2003).CrossRefGoogle Scholar
Dao, M., Lu, L., Asaro, R.J., De Hosson, J.T.M., and Ma, E.: Toward a quantitative understanding of mechanical behavior of nanocrystalline metals. Acta Mater. 55(12), 4041 (2007).CrossRefGoogle Scholar
Koch, C.C.: Ductility in nanostructured and ultra fine-grained materials: Recent evidence for optimism. J. Metastable Nanocryst. Mater. 18, 920 (2003).Google Scholar
Koch, C.C., Morris, D.G., Lu, K., and Inoue, A.: Ductility of nanostructured materials. MRS Bull. 24(2), 54 (1999).CrossRefGoogle Scholar
Koch, C.C., Youssef, K.M., Scattergood, R.O., and Murty, K.L.: Breakthroughs in optimization of mechanical properties of nanostructured metals and alloys. Adv. Eng. Mater. 7(9), 787 (2005).CrossRefGoogle Scholar
Wang, Y.M. and Ma, E.: Three strategies to achieve uniform tensile deformation in a nanostructured metal. Acta Mater. 52(6), 1699 (2004).CrossRefGoogle Scholar
Ma, E.: Eight routes to improve the tensile ductility of bulk nanostructured metals and alloys. JOM 58(4), 49 (2006).CrossRefGoogle Scholar
Witkin, D., Lee, Z., Rodriguez, R., Nutt, S., and Lavernia, E.: Al-mg alloy engineered with bimodal grain size for high strength and increased ductility. Scr. Mater. 49(4), 297 (2003).CrossRefGoogle Scholar
Wang, Y., Chen, M., Zhou, F., and Ma, E.: High tensile ductility in a nanostructured metal. Nature 419(6910), 912 (2002).CrossRefGoogle Scholar
Zhao, Y., Topping, T., Bingert, J.F., Thornton, J.J., Dangelewicz, A.M., Li, Y., Liu, W., Zhu, Y., Zhou, Y., and Lavernia, E.J.: High tensile ductility and strength in bulk nanostructured nickel. Adv. Mater. 20(16), 3028 (2008).CrossRefGoogle Scholar
He, G., Eckert, J., Loser, W., and Schultz, L.: Novel Ti-base nanostructure-dendrite composite with enhanced plasticity. Nat. Mater. 2(1), 33 (2003).CrossRefGoogle ScholarPubMed
Ma, E.: Nanocrystalline materials: Controlling plastic instability. Nat. Mater. 2(1), 7 (2003).CrossRefGoogle Scholar
Padilla, H.A. II, Boyce, B.L., Clark, B.G., and Michael, J.R.: Grain-size scaling transitions in the fatigue behavior of ultrafine and nanocrystalline Ni-Fe. Acta Mater. (submitted).Google Scholar
Mayer, J., Giannuzzi, L.A., Kamino, T., and Michael, J.: Tem sample preparation and Fib-induced damage. MRS Bull. 32(5), 400 (2007).CrossRefGoogle Scholar
Ebrahimi, F., Ahmed, Z., and Li, H.Q.: Tensile properties of electrodeposited nanocrystalline Fcc metals. Mater. Manuf. Processes 21(7), 687 (2006).CrossRefGoogle Scholar
Li, H., Ebrahimi, F., Choo, H., and Liaw, P.K.: Grain size dependence of tensile behavior in nanocrystalline ni-fe alloys. J. Mater. Sci. 41(22), 7636 (2006).CrossRefGoogle Scholar
Li, H., Choo, H., and Liaw, P.K.: The effect of temperature on strain rate sensitivity in a nanocrystalline Ni-Fe alloy. J. Appl.Phys. 101(6), 063536-1063536-7 (2007).Google Scholar
Wei, Q.: Strain rate effects in the ultrafine grain and nanocrystalline regimes—influence on some constitutive responses. J. Mater. Sci. 42(5), 1709 (2007).CrossRefGoogle Scholar
Qin, X.Y., Zhu, X.G., Gao, S., Chi, L.F., and Lee, J.S.: Compression behaviour of bulk nanocrystalline ni-fe. J. Phys. Condens. Matter 14(10), 2605 (2002).Google Scholar
Backofen, W.A.: Deformation processing. Metall. Trans. 4(12), 2679 (1973).CrossRefGoogle Scholar
Hill, R.: On discontinuous plastic states, with special reference to localized necking in thin sheets. J. Mech. Phys. Solids 1(1), 19 (1952).CrossRefGoogle Scholar
Lee, H.J., Zhang, P., and Bravman, J.C.: Tensile failure by grain thinning in micromachined aluminum thin films. J. Appl. Phys. 93(3), 1443 (2003).CrossRefGoogle Scholar
Zhao, Y.H., Guo, Y.Z., Wei, Q., Topping, T.D., Dangelewicz, A.M., Zhu, Y.T., Langdon, T.G., and Lavernia, E.J.: Influence of specimen dimensions and strain measurement methods on tensile stress-strain curves. Mater. Sci. Eng., A 525(1–2), 68 (2009).CrossRefGoogle Scholar
Wang, Y.M., Cheng, S., Wei, Q.M., Ma, E., Nieh, T.G., and Hamza, A.: Effects of annealing and impurities on tensile properties of electrodeposited nanocrystalline Ni. Scr. Mater. 51(11), 1023 (2004).CrossRefGoogle Scholar
Li, H.Q. and Ebrahimi, F.: Transition of deformation and fracture behaviors in nanostructured face-centered-cubic metals. Appl. Phys. Lett. 84(21), 4307 (2004).CrossRefGoogle Scholar
Li, H.Q. and Ebrahimi, F.: Ductile-to-brittle transition in nanocrystalline metals. Adv. Mater. 17(16), 1969 (2005).CrossRefGoogle Scholar
Cheung, C., Palumbo, G., and Erb, U.: Synthesis of nanocrystalline permalloy by electrodeposition. Scr. Metall. Mater. 31(6), 735 (1994).CrossRefGoogle Scholar
Hasnaoui, A., Van Swygenhoven, H., and Derlet, P.M.: Dimples on nanocrystalline fracture surfaces as evidence for shear plane formation. Science 300(5625), 1550 (2003).CrossRefGoogle ScholarPubMed
Anderson, T.L.: Fracture Mechanics: Fundamentals and Applications (Taylor & Francis, Boca Raton, FL, 2005).CrossRefGoogle Scholar
Yang, Y., Imasogie, B., Fan, G.J., Liaw, P.K., and Soboyejo, W.O.: Fatigue and fracture of a bulk nanocrystalline NiFe alloy. Metall. Mater.Trans. A 39(5), 1145 (2008).CrossRefGoogle Scholar
Taylor, G.: Thermally-activated deformation of Bcc metals and alloys. Prog. Mater. Sci. 36, 29 (1992).CrossRefGoogle Scholar
Schoeck, G.: The activation energy of dislocation movement. Phys. Status Solidi B 8(2), 499 (1965).CrossRefGoogle Scholar
Wang, Y.M., Hamza, A.V., and Ma, E.: Activation volume and density of mobile dislocations in plastically deforming nanocrystalline Ni. Appl. Phys. Lett. 86(24), 241917-1241917-3 (2005).CrossRefGoogle Scholar
Gianola, D.S., Warner, D.H., Molinari, J.F., and Hemker, K.J.: Increased strain rate sensitivity due to stress-coupled grain growth in nanocrystalline Al. Scr. Mater. 55(7), 649 (2006).CrossRefGoogle Scholar
Van Swygenhoven, H., Derlet, P.M., and Hasnaoui, A.: Atomic mechanism for dislocation emission from nanosized grain boundaries. Phys. Rev. B: Condens. Matter 66(2), 024101 (2002).CrossRefGoogle Scholar
Asaro, R.J. and Suresh, S.: Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins. Acta Mater. 53(12), 3369 (2005).CrossRefGoogle Scholar
Sherby, O.D. and Wadsworth, J.: Superplasticity - recent advances and future-directions. Prog. Mater. Sci. 33(3), 169 (1989).CrossRefGoogle Scholar
Van Swygenhoven, H. and Derlet, P.M.: Grain-boundary sliding in nanocrystalline fcc metals. Phys. Rev. B: Condens. Matter 64(22), 224105 (2001).CrossRefGoogle Scholar
Kumar, K.S., Suresh, S., Chisholm, M.F., Horton, J.A., and Wang, P.: Deformation of electrodeposited nanocrystalline nickel. Acta Mater. 51(2), 387 (2003).CrossRefGoogle Scholar
Coble, R.L.: A model for boundary diffusion controlled creep in polycrystalline materials. J. Appl. Phys. 34(6), 1679 (1963).CrossRefGoogle Scholar
Chokshi, A.H., Rosen, A., Karch, J., and Gleiter, H.: On the validity of the Hall-Petch relationship in nanocrystalline materials. Scr. Metall. 23(10), 1679 (1989).CrossRefGoogle Scholar
Masumura, R.A., Hazzledine, P.M., and Pande, C.S.: Yield stress of fine grained materials. Acta Mater. 46(13), 4527 (1998).CrossRefGoogle Scholar
Sanders, P.G., Rittner, M., Kiedaisch, E., Weertman, J.R., Kung, H., and Lu, Y.C.: Creep of nanocrystalline Cu, Pd, and al-Zr. Nanostruct. Mater. 9(1–8), 433 (1997).CrossRefGoogle Scholar
Cai, B., Kong, Q.P., Lu, L., and Lu, K.: Interface controlled diffusional creep of nanocrystalline pure copper. Scr. Mater. 41(7), 755 (1999).CrossRefGoogle Scholar
Lu, L., Sui, M.L., and Lu, K.: Superplastic extensibility of nanocrystalline copper at room temperature. Science 287(5457), 1463 (2000).CrossRefGoogle ScholarPubMed
Considère, A.: Mémoire sur l'emploi du fer et de l'acier dons les constructions. Annales des Ponts et Chaussées. 9, 574 (1885).Google Scholar
Hart, E.W.: Theory of the tensile test. Acta Metall. 15(2), 351 (1967).CrossRefGoogle Scholar
Jonas, J.J., Holt, R.A., and Coleman, C.E.: Plastic stability in tension and compression. Acta Metall. 24(10), 911 (1976).CrossRefGoogle Scholar
Kocks, U.F., Jonas, J.J., and Mecking, H.: The development of strain-rate gradients. Acta Metall. 27(3), 419 (1979).CrossRefGoogle Scholar
Ghosh, A.K.: Tensile instability and necking in materials with strain hardening and strain-rate hardening. Acta Metall. 25(12), 1413 (1977).CrossRefGoogle Scholar
Hutchinson, J.W. and Neale, K.W.: Influence of strain-rate sensitivity on necking under uniaxial tension. Acta Metallurgica. 25(8), 839 (1977).CrossRefGoogle Scholar
Lin, I.H., Hirth, J.P., and Hart, E.W.: Plastic instability in uniaxial tension tests. Acta Metall. 29(5), 819 (1981).CrossRefGoogle Scholar
Pardoen, T., Coulombier, M., Boe, A., Safi, A., Brugger, C., Ryelandt, S., Carbonnelle, P., Gravier, S., and Raskin, J.P.: Ductility of thin metallic films. Mater. Sci. Forum 633634 (2010).Google Scholar
Ebrahimi, F., Bourne, G.R., Kelly, M.S., and Matthews, T.E.: Mechanical properties of nanocrystalline nickel produced by electrodeposition. Nanostruct. Mater. 11(3), 343 (1999).CrossRefGoogle Scholar
Tvergaard, V.: Necking in tensile bars with rectangular cross-section. Comput. Meth. Appl. Mech. Eng. 103(1–2), 273 (1993).CrossRefGoogle Scholar
ASTM E8/E8M – 11: Standard Test Methods for Tension Testing of Metallic Materials, 27 (ASTM International, West Conshohocken, PA, 2011).Google Scholar
Barba, M.J.: Resistance des Matériaux. Épreuves de résistance a la traction. Etude sur les allongements des métaux après rupture. Mem. Soc. Ing. Civils. 1, 682 (1880).Google Scholar
Unwin, W.C.: Tensile tests of mild steel; and the relation of elongation to the size of the test-bar. Proc. Inst. Civ. Eng. Civ. Eng. 170, 233 (1903).Google Scholar
Kula, E.B. and Fahey, N.H.: Effect of specimen geometry on determination of elongation in sheet tension specimens. Mater. Res. Stand. 1, 631 (1961).Google Scholar
Youssef, K.M., Scattergood, R.O., Murty, K.L., and Koch, C.C.: Ultratough nanocrystalline copper with a narrow grain size distribution. Appl. Phys. Lett. 85(6), 929 (2004).CrossRefGoogle Scholar
Gianola, D.S., Mendis, B.G., Cheng, X.M., and Hemker, K.J.: Grain-size stabilization by impurities and effect on stress-coupled grain growth in nanocrystalline Al thin films. Mater. Sci. Eng., A 483484, 637 (2008).CrossRefGoogle Scholar