Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T01:31:39.006Z Has data issue: false hasContentIssue false

Interfacial reaction products and film orientation in YBa2Cu3O7−x on zirconia substrates with and without CeO2 buffer layers

Published online by Cambridge University Press:  03 March 2011

G.L. Skofronick
Affiliation:
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802
A.H. Carim
Affiliation:
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802
S.R. Foltyn
Affiliation:
Superconductivity Technology Center, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
R.E. Muenchausen
Affiliation:
Superconductivity Technology Center, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Get access

Abstract

Thick film (1.2 μm) YBCO superconductors grown by pulsed laser deposition on unbuffered and CeO2-buffered single crystal (001)-oriented yttria-stabilized zirconia (YSZ) substrates have been investigated. YBCO and YSZ react to form BaZrO3 (BZO), whereas YBCO and CeO2 react to form BaCeO3. Reaction phases were examined by θ-2θ and four-circle x-ray diffraction and high resolution electron microscopy. Three orientation relationships identified for the unbuffered films were (i) (001)YBCO ‖ (011)BZO ‖ (001)YSZ with [110]YBCO ‖ [100]BZO ‖ [100]YSZ, (ii) (001)YBCO ‖ (001)BZO ‖ (001)YSZ with [110]YBCO ‖ [100]BZO ‖ [100]YSZ, and (iii) (001)YBCO ‖ (001)BZO ‖ (001)YSZ with [100]YBCO ‖ [100]BZO ‖ [100]YSZ. The results suggest that for films grown at typical deposition temperatures, YBCO epitaxy is established before the interfacial reaction occurs. The presence of BaCeO3 in buffered films grown at high temperatures (790 °C) was confirmed by θ-2θ scans and selected area diffraction patterns.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Carim, A. H., Basu, S. N., and Muenchausen, R. E., Appl. Phys. Lett. 58, 871 (1991).Google Scholar
2Basu, S. N., Carim, A. H., and Mitchell, T. E., J. Mater. Res. 6, 1823 (1991).Google Scholar
3Wu, X. D., Muenchausen, R. E., Foltyn, S., Estler, R. C., Dye, R. C., Garcia, A. R., Nogar, N. S., England, P., Ramesh, R., Hwang, D. M., Ravi, T. S., Chang, C. C., Venkatesan, T., Xi, X. X., Li, Q., and Inam, A., Appl. Phys. Lett.. 57, 523 (1990).Google Scholar
4Simon, R. W., Platt, C. E., Lee, A. E., Lee, G. S., Daly, K. P., Wire, M. S., Liune, J. A., and Urbanik, M., Appl. Phys. Lett. 53, 2677 (1988).Google Scholar
5Siegal, M. P., Phillips, J. M., van Dover, R.B., Tiefel, T. H., and Marshall, J. H., J. Appl. Phys. 68, 6353 (1990).Google Scholar
6Singh, R. K., Narayan, J., Singh, A. K., and Krishnaswamy, J., Appl. Phys. Lett. 54, 2271 (1989).CrossRefGoogle Scholar
7Wu, X. D., Muenchausen, R. E., Foltyn, S., Estler, R. C., Dye, R. C., Flamme, C., Nogar, N. S., Garcia, A. R., Martin, J., and Tesmer, J., Appl. Phys. Lett.. 56, 1481 (1990).CrossRefGoogle Scholar
8Fork, D. K., Garrison, S. M., Hawley, M., and Geballe, T. H., J. Mater. Res. 7, 1641 (1992).Google Scholar
9Alarco, J. A., Brorsson, G., Ivanov, Z. G., Nilsson, P-Å., Olsson, E., and Löfgren, M., Appl. Phys. Lett. 61, 723 (1992).CrossRefGoogle Scholar
10Casanove, M. J., Alimoussa, A., Roucau, C., Escribe-Filippini, C., Reydet, P. L., and Marcus, P., Physica C. 175, 285 (1991).CrossRefGoogle Scholar
11Shapiro, M. J., More, K. L., Lackey, W. J., Hanigofsky, J. A., Hill, D. N., Carter, W. B., Barefleld, E. K., Judson, E. A., O'Brian, D.F., Patrick, R., Chung, Y. S., and Moss, T. S., J. Am. Ceram. Soc. 74, 2021 (1991).Google Scholar
12Tietz, L. A., Carter, C. B., Lathrop, D. K., Russek, S. E., Buhrman, R. A., and Michael, J. R., J. Mater. Res. 4, 1072 (1989).Google Scholar
13Bailey, A., Alvarez, G., Russell, G. J., and Taylor, K.N.R., Cryogenics 30, 599 (1990).Google Scholar
14Cima, M. J., Scheider, J. S., Peterson, S. C., and Coblenz, W., Appl. Phys. Lett. 53, 710 (1988).Google Scholar
15Hwang, D. M., Ying, Q. Y., and Kwok, H. S., Appl. Phys. Lett. 58, 2429 (1991).Google Scholar
16Wu, X. D., Dye, R. C., Muenchausen, R. E., Foltyn, S., Maley, M., Rollet, A. D., Garcia, A. R., and Nogar, N. S., Appl. Phys. Lett.. 56, 2165 (1990).Google Scholar
17Kim, C. J., Km, K. B., Kwon, S. C., Chang, I. S., and Won, D. Y., J. Mater. Sci. Lett.. 11, 346 (1992).Google Scholar
18Benedict, J. P., Klepeis, S. J., Vandygrift, W. G., and Anderson, R., EMSA Bulletin 19:2, 74 (1989).Google Scholar
19Total Resolution, 20 Florida Ave., Berkeley, CA 94707.Google Scholar
20Garrison, S. M., Newman, N., Cole, B. F., Char, K., and Barton, R. W., Appl. Phys. Lett. 58, 2168 (1991).Google Scholar
21McKernan, S., Norton, M. G., and Carter, C. B., J. Mater. Res. 7, 1052 (1992).Google Scholar
22Traeholt, C., Wen, J. G., and Svetchnikov, V., Physica C. 206, 318 (1993).Google Scholar