Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-26T01:47:13.720Z Has data issue: false hasContentIssue false

Interfacial phenomena involving liquid metals and solid oxides in the Mg–Al–O system

Published online by Cambridge University Press:  31 January 2011

D. A. Weirauch Jr.
Affiliation:
Aluminum Company of America, Alcoa Laboratories, Alcoa Center, Pennsylvania 15039
Get access

Abstract

The wetting of ceramic surfaces by aluminum alloys has been reexamined using a chemical system where interfacial reactions and oxide film effects could be isolated. The system Al–Mg–O was chosen since it is technologically important and high-purity, well-characterized materials are readily available. Magnesium alloyed with the aluminum sessile drop and silicon picked up from the experimental apparatus cause an initial reduction in contact angle by altering the protective nature of the oxide film formed on the sessile drop. Evidence of spreading is observed as an intermediate process in the reactive sessile drop pairs. Reaction products formed between the Al–Mg alloys and sapphire (Al2O3), spinel (MgAl2O4), or periclase (MgO) can be interpreted with predicted phase equilibria and the measured loss of magnesium from the sessile drop. Only the rate of the periclase alloy interaction was rapid enough to result in a continuous product layer after 24 h at 800 °C. The volatilization of all of the magnesium from the sessile drop resulted in the formation of a true Al–Al2O3 interface. The contact angle for a true Al–Al2O3 interface is 88 ± 5 deg at 800 °C. The liquid-solid interfacial energy is 1688 ergs/cm2.

Type
Articles
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Cornie, J. A.Chiang, Y.-M.Uhlmann, D. R.Mortensen, A. and Collins, J. M.Am. Ceram. Soc. Bull. 65, 293 (1986).Google Scholar
2Banerji, A.Rohatgi, P. K. and Reif, I. W.Metall. Tech. 38, 656 (1984).Google Scholar
3Weirauch, D. A. in Ceramic Micmstructures '86: The Role of Interfaces, edited by Pask, J. A. and Evans, A. G. (Plenum, New York, 1988).Google Scholar
4John, H. and Hausner, H.Int. J. High Tech. Ceram. 2, 73 (1986).CrossRefGoogle Scholar
5John, H. and Hausner, H.J. Mater. Sci. Lett. 5, 549 (1986).CrossRefGoogle Scholar
6Coudurier, L.Adorian, J.Pique, D. and Eustathopoulos, N.Rev. Int. Hautes Temp. Refract (in French) 21, 81 (1984).Google Scholar
7Eustathopoulos, N.Joud, J. C.Desre, P., and Hicter, M.J. Mater. Sci. 9, 1233 (1974).CrossRefGoogle Scholar
8Wolf, S. M.Levitt, A. P. and Brown, J.Chem. Eng. Prog. 62, 74 (1966).Google Scholar
9Kohler, W.Aluminium 51, 443 (1975).Google Scholar
10Brennan, J. J. and Pask, J. A.J. Am. Ceram. Soc. 51, 569 (1968).CrossRefGoogle Scholar
11Brennan, J. J.thesis, M. S. University of California at Berkeley, 1966.Google Scholar
12McEvoy, A. J.Williams, R. H. and Higginbotham, I. G.J. Mater. Sci. 11, 297 (1976).CrossRefGoogle Scholar
13Munitz, A.Metzger, M. and Mehrabian, R.Metall. Trans. A 10, 1491 (1979).CrossRefGoogle Scholar
14Lindsay, J. G.Bakker, W. T. and Dewing, E. W.J. Am. Ceram. Soc. 47, 90 (1964).CrossRefGoogle Scholar
15Judd, M. S. and Nelson, J. A.Am. Ceram. Soc. Bull. 55, 643 (1976).Google Scholar
16Smeltzer, W. W.J. Electrochem. Soc. 105, 67 (1958).CrossRefGoogle Scholar
17Drouzy, M. and Mascre, C.Metall. Rev. 14, 25 (1969).CrossRefGoogle Scholar
18Cochran, C. N.Belitskus, D. L. and Kinosz, D. L.Metall. Trans. B 8, 323 (1977).CrossRefGoogle Scholar
19Wefers, K.Aluminium 57, 722 (1981).Google Scholar
20Snyder, T. J. M. S. thesis University of Missouri at Rolla, 1982.Google Scholar
21Singh, M. and Kumar, R.J. Mater. Sci. 8, 317 (1973).CrossRefGoogle Scholar
22Mehl, R. F.Metals Handbook (American Society of Metals, Metals Park, Ohio, 1972), 8th ed., Vol. 7, pp. 256260.Google Scholar
23JANAF Thermochemical Tables, edited by Stull, D. R. and Prophet, H. NBS National Reference Data System, NSRDS-NBS37 (National Bureau of Standards, Washington, DC, 1971), 2nd ed.Google Scholar
24Belton, G. R. and Rao, Y. K.Trans. Metall. Soc. AIME 245, 2189 (1969).Google Scholar
25Naidich, Yu. V.Chubashov, Yu. N.Ishchuk, N. F. and Kra-sovskii, V. P., Poroshk. Metall. 6, 67 (1983).Google Scholar
26Champion, J. A.Keene, B. J. and Sillwood, J. M.J. Mater. Sci. 4, 39 (1969).CrossRefGoogle Scholar
27French, T. M. and Somorjai, G. A.J. Phys. Chem. 74, 2489 (1970).CrossRefGoogle Scholar
28Wagner, R. S. and Ellis, W. C.Appl. Phys. Lett. 4, 89 (1964).CrossRefGoogle Scholar
29Hansen, M. and Anderko, K.Constitution of Binary Alloys, (McGraw-Hill, New York, 1958), 2nd ed., p. 122.Google Scholar
30Yanagida, H. and Kroger, F. A.J. Am. Ceram. Soc. 51, 700 (1968).CrossRefGoogle Scholar
31Webb, W. W. and Forgeng, W. D.J. Appl. Phys. 28, 1449 (1957).CrossRefGoogle Scholar
32Winterbottom, W. L. and Gilmour, G. A.J. Vac. Sci. Technol. 13, 634 (1976).CrossRefGoogle Scholar
33Rice, R. W. and Haller, G. L. in the Proceedings of the 5th International Congress on Catalysis, edited by Hightow, J. W. (North-Holland, Amsterdam, 1973), Vol. 1, pp. 17317.Google Scholar
34Aksay, I. A.Hoge, C. E. and Pask, J. A.J. Phys. Chem. 78, 1178 (1974).CrossRefGoogle Scholar
35Yin, T. P.J. Phys. Chem. 73, 2413 (1969).CrossRefGoogle Scholar
36Korol'kov, A. M. and Bychkova, A. A.Issledovaniye Splavov Tsvet-nykh Metal. 2, 122 (1960).Google Scholar
37Thiele, W.Aluminium 38, 707 and 780 (1962).Google Scholar
38Radin, A. Ya.Svoistva Rasplavl. Met., in Trudy Soveshchaniya Teoreticheskikh Liteinykh Protessov, No. 16 (Nauka, Moscow, 1974), p. 116.Google Scholar
39Newkirk, M. S.Urquhart, A. W. and Zwicker, H. R.J. Mater. Res. 1, 81 (1986).CrossRefGoogle Scholar
40Anderson, W. A. in the Proceedings of the 8th International American Welding Society Brazing Conference, Philadelphia, PA, 26 April 1977.Google Scholar
41Beruto, D.Barco, L. and Belled, G.Cermurgia Int. 1, 87 (1975).CrossRefGoogle Scholar
42Garcia-Cordovilla, C., Louis, E. and Pamies, A.J. Mater. Sci. 21, 2787 (1986).CrossRefGoogle Scholar
43Gebhardt, E.Becker, M. and Dorner, S.Aluminium 7/8, 315 (1955).Google Scholar
44Lang, G.Aluminium 50, 731 (1974).Google Scholar
45Nikolopoulos, P.J. Mater. Sci. 20, 3993 (1985).CrossRefGoogle Scholar
46Smith, C. S. AIME Institute of Metals Division, Technical Publication No. 2387, 1948.Google Scholar