Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-14T23:23:42.376Z Has data issue: false hasContentIssue false

Interfacial defects distribution and strain coupling in the vertically aligned nanocomposite YBa2Cu3O7-X/ BaSnO3 thin films

Published online by Cambridge University Press:  09 May 2012

Yuanyuan Zhu
Affiliation:
Department of Electrical and Computer Engineering, Texas A & M University, College Station, Texas 77843-3128
Chen-Fong Tsai
Affiliation:
Department of Electrical and Computer Engineering, Texas A & M University, College Station, Texas 77843-3128
Jie Wang
Affiliation:
Department of Electrical and Computer Engineering, Texas A & M University, College Station, Texas 77843-3128
Ji Heon Kwon
Affiliation:
Department of Electrical and Computer Engineering, Texas A & M University, College Station, Texas 77843-3128
Haiyan Wang*
Affiliation:
Department of Electrical and Computer Engineering, Texas A & M University, College Station, Texas 77843-3128
Chakrapani V. Varanasi
Affiliation:
University of Dayton Research Institute, Dayton, Ohio 45469
Jack Burke
Affiliation:
University of Dayton Research Institute, Dayton, Ohio 45469
Lyle Brunke
Affiliation:
University of Dayton Research Institute, Dayton, Ohio 45469
Paul N. Barnes
Affiliation:
Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

In this article, we report the unique microstructural characteristics of YBa2Cu3O7-x (YBCO)/BaSnO3 (BSO) nanocomposite thin films on LaAlO3 (LAO) substrates. The BSO secondary phase grows as self-assembled vertically aligned nanopillars uniformly distributed in the superconducting YBCO matrix. Detailed microstructure and strain studies including x-ray diffraction, cross-section and plan-view transmission electron microscopy, and geometric phase analysis reveal that, as the BSO doping concentration varied from 2 mol% to 20 mol%, the nanopillar density increased from 0.26 × 1011/cm2 to 1.44 × 1011/cm2 while the diameter of the nanopillars remains relatively constant (7–8 nm in diameter). The strain state of the YBCO matrix is affected by both lateral and vertical lattice strains; while, the BSO lattice is strongly tuned by YBCO rather than the substrate. A high-density array of dislocations in the order of 1013/cm2 was observed along the vertical heterogeneous interfaces throughout the YBCO film thickness for all doping concentrations.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Lebedev, O.I., Verbeeck, J., Van Tendeloo, G., Shapoval, O., Belenchuk, A., Moshnyaga, V., Damashcke, B., and Samwer, K.: Structural phase transitions and stress accommodation in (La0.67Ca0.33MnO3)1-x:(MgO)x composite films. Phys. Rev. B 66, 104421 (2002).CrossRefGoogle Scholar
2.Ma, J., Hu, J.M., Li, Z., and Nan, C.W.: Recent progress in multiferroic magnetoelectric composites: From bulk to thin films. Adv. Mater. 23, 1062 (2011).CrossRefGoogle ScholarPubMed
3.Nan, C.W., Bichurin, M.I., Dong, S.X., Viehland, D., and Srinivasan, G.: Multiferroic magnetoelectric composites: Historical perspective, status, and future directions. J. Appl. Phys. 103, 31101 (2008).CrossRefGoogle Scholar
4.Harrington, S.A., Durrell, J.H., Wang, H., Wimbush, S.C., Tsai, C.F., and MacManus-Driscoll, J.L.: Understanding nanoparticle self-assembly for a strong improvement in functionality in thin film nanocomposites. Nanotechnology 21, 235702 (2010).CrossRefGoogle Scholar
5.Zheng, H., Wang, J., Lofland, S.E., Ma, Z., Mohaddes-Ardabili, L., Zhao, T., Salamanca-Riba, L., Shinde, S.R., Ogale, S.B., Bai, F., Viehland, D., Jia, Y., Schlom, D.G., Wuttig, M., Roytburd, A., and Ramesh, R.: Multiferroic BaTiO3-CoFe2O4 nanostructures. Science 303, 661 (2004).CrossRefGoogle ScholarPubMed
6.MacManus-Driscoll, J.L., Zerrer, P., Wang, H.Y., Yang, H., Yoon, J., Fouchet, A., Yu, R., Blamire, M.G., and Jia, Q.X.: Strain control and spontaneous phase ordering in vertical nanocomposite heteroepitaxial thin films. Nat. Mater. 7, 314 (2008).CrossRefGoogle ScholarPubMed
7.Yang, H., Wang, H.Y., Yoon, J., Wang, Y.Q., Jain, M., Feldmann, D.M., Dowden, P.C., MacManus-Driscoll, J.L., and Jia, Q.X.: Vertical interface effect on the physical properties of self-assembled nanocomposite epitaxial films. Adv. Mater. 21, 3794 (2009).CrossRefGoogle Scholar
8.Yoon, J., Cho, S., Kim, J.H., Lee, J., Bi, Z.X., Serquis, A., Zhang, X.H., Manthiram, A., and Wang, H.Y.: Vertically aligned nanocomposite thin films as a cathode/electrolyte interface layer for thin-film solid-oxide fuel cells. Adv. Funct. Mater. 19, 3868 (2009).CrossRefGoogle Scholar
9.Bi, Z.X., Lee, J.H., Yang, H., Jia, Q.X., MacManus-Driscoll, J.L., and Wang, H.Y.: Tunable lattice strain in vertically aligned nanocomposite (BiFeO3)x:(Sm2O3)1-x thin films. J. Appl. Phys. 106, 94309 (2009).CrossRefGoogle Scholar
10.Chen, A.P., Bi, Z.X., Tsai, C.F., Lee, J., Su, Q., Zhang, X.H., Jia, Q.X., MacManus-Driscoll, J.L., and Wang, H.Y.: Tunable low-field magnetoresistance in (La0.7Sr0.3MnO3)0.5:(ZnO)0.5 self-assembled vertically aligned nanocomposite thin films. Adv. Funct. Mater. 21, 2423 (2011).CrossRefGoogle Scholar
11.Wu, M.K., Ashburn, J.R., Torng, C.J., Hor, P.H., Meng, R.L., Gao, L., Huang, Z.J., Wang, Y.Q., Chu, C.W.: Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure. Phys. Rev. Lett. 58, 908 (1987).CrossRefGoogle Scholar
12.Foltyn, S.R., Civale, L., MacManus-Driscoll, J.L., Jia, Q.X., Maiorov, B., Wang, H., and Maley, M.: Materials science challenges for high-temperature superconducting wire. Nat. Mater. 6, 631 (2007).CrossRefGoogle ScholarPubMed
13.Wimbush, S.C., Durrell, J.H., Tsai, C.F., Wang, H., Jia, Q.X., Blamire, M.G., and MacManus-Driscoll, J.L.: Enhanced critical current in YBa2Cu3O7-δ thin films through pinning by ferromagnetic YFeO3 nanoparticles. Supercond. Sci. Technol. 23, 45019 (2010).CrossRefGoogle Scholar
14.Haugan, T., Barnes, P.N., Wheeler, R., Meisenkothen, F., and Sumption, M.: Addition of nanoparticle dispersions to enhance flux pinning of the YBa2Cu3O7-x superconductor. Nature 430, 867 (2004).CrossRefGoogle ScholarPubMed
15.Dam, B., Huijbregtse, J.M., and Rector, J.H.: Strong pinning linear defects formed at the coherent growth transition of pulsed-laser-deposited YBa2Cu3O7-δ films. Phys. Rev. B 65, 64528 (2002).CrossRefGoogle Scholar
16.MacManus-Driscoll, J.L., Foltyn, S.R., Jia, Q.X., Wang, H., Serquis, A., Civale, L., Maiorov, B., Hawley, M.E., Maley, M.P., and Peterson, D.E.: Strongly enhanced current densities in superconducting coated conductors of YBa2Cu3O7-x+BaZrO3. Nat. Mater. 3, 439 (2004).CrossRefGoogle Scholar
17.Foltyn, S.R., Wang, H., Civale, L., Jia, Q.X., Arendt, P.N., Maiorov, B., Li, Y., Maley, M.P., and MacManus-Driscoll, J.L.: Overcoming the barrier to 1000 A/cm width superconducting coatings. Appl. Phys. Lett. 87, 162505 (2005).CrossRefGoogle Scholar
18.Kang, S., Goyal, A., Li, J., Gapud, A.A., Martin, P.M., Heatherly, L., Thompson, J.R., Christen, D.K., List, F.A., Paranthaman, M., and Lee, D.F.: High-performance high-Tc superconducting wires. Science 311, 1911 (2006).CrossRefGoogle ScholarPubMed
19.Varanasi, C.V., Burke, J., Brunke, L., Wang, H., Sumption, M., and Barnes, P.N.: Enhancement and angular dependence of transport critical current density in pulsed laser deposited YBa2Cu3O7-x+BaSnO3 films in applied magnetic fields. J. Appl. Phys. 102, 63909 (2007).CrossRefGoogle Scholar
20.Varanasi, C.V., Burke, J., Brunke, L., Wang, H., Lee, J.H., and Barnes, P.N.: Critical current density and microstructure variations in YBa2Cu3O7-x+BaSnO3 films with different concentrations of BaSnO3. J. Mater. Res. 23, 3363 (2008).CrossRefGoogle Scholar
21.Wee, S.H., Goyal, A., Specht, E.D., Cantoni, C., Zuev, Y.L., Selvamanickam, V., and Cook, S.: Enhanced flux pinning and critical current density via incorporation of self-assembled rare-earth barium tantalate nanocolumns within YBa2Cu3O7-δ films. Phys. Rev. B 81, 140503 (2010).CrossRefGoogle Scholar
22.Wee, S.H., Goyal, A., Zuev, Y.L., Cantoni, C., Selvamanickam, V., and Specht, E.D.: Formation of, double-perovskite, nanocolumns and their contribution to flux-pinning and Jc in Nb-doped YBa2Cu3O7-δ films. Appl. Phys. Express 3, 023101 (2010).CrossRefGoogle Scholar
23.Cantoni, C., Gao, Y.F., Wee, S.H., Specht, E.D., Gazquez, J., Meng, J.Y., Pennycook, S.J., and Goyal, A.: Strain-driven oxygen deficiency in self-assembled, nanostructured, composite oxide films. ACS Nano 5, 4783 (2011).CrossRefGoogle ScholarPubMed
24.Wang, H.Y. and Wang, J.: Interfacial defects and flux-pinning effects in nanostructured YBa2Cu3O7-δ thin films. IEEE Trans. Appl. Supercond. 19, 3395 (2009).CrossRefGoogle Scholar
25.Barnes, P.N., Haugan, T.J., Varanasi, C.V., and Campbell, T.A.: Flux pinning behavior of incomplete multilayered lattice structures in YBa2Cu3O7-δ. Appl. Phys. Lett. 85, 4088 (2004).CrossRefGoogle Scholar
26.Winterbottom, W.L.: Equilibrium shape of a small particle in contact with a foreign substrate. Acta Metall. 15, 303 (1967).CrossRefGoogle Scholar
27.Mele, P., Matsumoto, K., Horide, T., Ichinose, A., Mukaida, M., Yoshida, Y., Horii, S., and Kita, R.: Ultra-high flux pinning properties of BaMO3-doped YBa2Cu3O7-x thin films (M = Zr, Sn). Supercond. Sci. Technol. 21, 32002 (2008).CrossRefGoogle Scholar
28.Ichinose, A., Mele, P., Horide, T., Matsumoto, K., Goto, G., Mukaida, M., Kita, R., Yoshida, Y., and Horii, S.: Microstructures of REBa2Cu3Oy adding BaZrO3 or BaSnO3. Physica C 468, 1627 (2008).CrossRefGoogle Scholar
29.Narayan, J. and Larson, B.C.: Domain epitaxy: A unified paradigm for thin film growth. J. Appl. Phys. 93, 278 (2003).CrossRefGoogle Scholar
30.Blamire, M.G., MacManus-Driscoll, J.L., Mathur, N.D., and Barber, Z.H.: The materials science of functional oxide thin films. Adv. Mater. 21, 3827 (2009).CrossRefGoogle Scholar
31.Foltyn, S.R., Wang, H., Civale, L., Maiorov, B., and Jia, Q.X.: The role of interfacial defects in enhancing the critical current density of YBa2Cu3O7-δ coatings. Supercond. Sci. Technol. 22, 125002 (2009).CrossRefGoogle Scholar