Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T05:14:36.875Z Has data issue: false hasContentIssue false

Interfaces and properties of Al – Si alloy zircon particulate composites

Published online by Cambridge University Press:  31 January 2011

J. U. Ejiofor
Affiliation:
Department of Metallurgical and Materials Engineering, The University of Alabama, P.O. Box 870202, Tuscaloosa, Alabama 35487
R. G. Reddy
Affiliation:
Department of Metallurgical and Materials Engineering, The University of Alabama, P.O. Box 870202, Tuscaloosa, Alabama 35487
Get access

Abstract

Zircon-particle-dispersed Al−13.5Si−2.5Mg is a structural composite material being investigated for lightweight, tribological applications. The conventional, powder-processed material, in the temperature range of 22–100 °C, yielded a low coefficient of linear thermal expansion (CTE) of 7.8 × 10−6 °C at 0.15 volume fraction (Vf), a 64% reduction of that of the alloy. The dry sliding wear rate and the coefficient of friction measured by the pin-on-the-plate technique at 4 kg load decreased significantly by 99% and 35.5%, respectively. A significant reduction, by 29%, in wear rate of the alloy was observed to occur only when more than 0.03Vf zircon was dispersed. An x-ray study showed that the interface reaction products consist of compounds of Mg, Ce, Cu, and Nb. Tensile failure of the reaction-sintered parts revealed a ductile mode of fracture, with the path traversing both through voids and the bonded particles while interface failure was observed in parts without Mg. An analysis of both the tribological and tensile properties showed that an optimal performance of this alloy at 0.15Vf zircon is achieved when the Mg content is between 2.5 and 3.5 wt. %.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Lloyd, D. J., Int. Mater. Rev. 39, 123 (1994).CrossRefGoogle Scholar
2.Gutmanas, E. Y. and Lawley, A., Adv. Powd. Metall. 2, 114 (1990).Google Scholar
3.Banerji, A. M., Surappa, M. K., and Rohatgi, P. K., Metall. Trans. 14B, 273293 (1983).CrossRefGoogle Scholar
4.Kumar, S. G., Reddy, R. G., Wu, J., and Holthus, J., J. Mater. Eng. Perf. 4, 6369 (1995).CrossRefGoogle Scholar
5.Okabayashi, K. and Kuwamoto, M., Bull. Univ. Osaka Prefect 17A, (1) 1967).Google Scholar
6.Long, T. T., Nishimura, T., Aisaka, T., and Morita, M., Mater. Trans., JIM 32, 181188 (1991).CrossRefGoogle Scholar
7.Sarkar, A. D., Wear 54, 7 (1979).Google Scholar
8.Clarke, J. and Sakar, A. D., Wear 61, 157 (1980).Google Scholar
9.Ejiofor, J. U and Reddy, R. G., JOM, November, 3137 (1997).CrossRefGoogle Scholar
10.Sato, A. and Mehrabian, R., Metall. Trans. 7B, 443451 (1976).CrossRefGoogle Scholar
11.Halada, K., Rzesnitzek, K. D., Kaysser, W. A., and Petzow, G., Pow. Metall. Int. 21, 1015 (1989).Google Scholar
12.Ewing, R. C., Lutze, W., and Weber, W. J., J. Mater. Res. 10, 243246 (1995).CrossRefGoogle Scholar
13.Singh, R. N and Reddy, S. K., J. Am. Ceram. Soc. 79, 137147 (1996).CrossRefGoogle Scholar
14.Ejiofor, J. U., Okorie, B. A., and Reddy, R. G., J. Mater. Eng. Perf. 6, 326334 (1997).CrossRefGoogle Scholar
15.Satyanarayana, K. G., Pai, B. C., Krishnader, M. R., and Nair, C. G., in Aluminum Alloy Metal Matrix Composites for Engineering Applications (Proc. 32nd Int. SAMPE Symposium, April 6–9, 1987), pp. 880889.Google Scholar
16.Murali, T. P., Surappa, M. K., and Rohatgi, P. K., Metall. Trans. 13B, 485494 (1982).CrossRefGoogle Scholar
17.Ejiofor, J. U., Okorie, B. A., and Reddy, R. G., in Advances in Synthesis and Processing of Metal Matrix Composites (TMS Meeting, February 9–14, Orlando, 1997).Google Scholar
18.Schopery, R. A., J. Compos. Mater. 2, 380404 (1986).CrossRefGoogle Scholar
19.Touloukian, Y. S., Kirby, R. K., Taylor, R. E., and Lee, T. Y. R., Thermal Properties of Matter (Plenum Publishers, New York, 1977), Vol. 12.Google Scholar
20.Kelly, A., Encyclopedia of Composite Materials (North-Holland,Amsterdam), Vol. 198.Google Scholar
21.Houchin, M. R., Jenkins, D. H., and Sinha, H. N., Am. Ceram. Soc. Bull. 69, 17061710 (1990).Google Scholar
22.Martinez, M. A., Martin, A., and Llorea, J., Scripta Metall. Mater. 28, 207212 (1993).CrossRefGoogle Scholar
23.Alpes, A. T. and Zhang, J., Wear 155, 83 (1992).CrossRefGoogle Scholar
24.Volgelsang, M., Arsenault, R. J., and Fisher, R. M., Metall. Trans. 17A, 379 (1986).CrossRefGoogle Scholar