Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-04T18:39:31.068Z Has data issue: false hasContentIssue false

Interface microstructures between Ni-P alloy plating and Sn–Ag–(Cu) lead-free solders

Published online by Cambridge University Press:  31 January 2011

Chi-Won Hwang
Affiliation:
Institute of Scientific and Industrial Research, Osaka University Mihogaoka 8-1, Ibaraki, Osaka, 567-0047, Japan
Katsuaki Suganuma
Affiliation:
Institute of Scientific and Industrial Research, Osaka University Mihogaoka 8-1, Ibaraki, Osaka, 567-0047, Japan
Masayuki Kiso
Affiliation:
C. Uyemura & Co., Ltd. Deguchi 1-5-1, Hirakata, Osaka, 573-0065, Japan
Shigeo Hashimoto
Affiliation:
C. Uyemura & Co., Ltd. Deguchi 1-5-1, Hirakata, Osaka, 573-0065, Japan
Get access

Abstract

The interface microstructures of Sn-Ag and Sn-Ag-Cu solders with Au/Ni-6P plating were studied primarily using transmission electron microscopy. During soldering at 230°C, Au dissolved into molten solder, and double reaction layers of Ni3Sn4/η–Ni3SnP formed between Sn-3.5Ag solder and Ni-6P layer. P content increases in the surface region of the Ni-6P layer due to the depletion of Ni diffused into molten solder, resulting in the formation of Ni3P+Ni layer. For Sn-3.5Ag-0.7Cu solder, an η-(Ni,Cu)3Sn2 single layer, containing Cu of about 50 at.%, formed as a reaction layer.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Glazer, J., J. Electron. Mater. 23, 693 (1994).CrossRefGoogle Scholar
2.Suganuma, K., Current Opinion Solid State Mater. Sci 5, 55 (2001).CrossRefGoogle Scholar
3.Kim, K.S., Huh, S.H., and Suganuma, K., Mater. Sci. Eng. A 333, 106 (2002).CrossRefGoogle Scholar
4.Guo, F., Lucas, J.P., and Subramanian, K.N., J. Mater. Sci.: Mater. Electron. 12, 27 (2001).Google Scholar
5.Kang, S.K. and Sarkhel, A.K., J. Electron. Mater. 23, 701 (1994).CrossRefGoogle Scholar
6.Ho, C.E., Tsai, R.Y., Lin, Y.L., and Kao, C.R., J. Electron. 31, 584 (2002).Google Scholar
7.Uenishi, K., Kohara, Y., Sakatani, S., and Kobayashi, K.F., in Proc. of the 9th Symposium on Microjoining and Assembly Technology in Electronics, edited by Nakata, S. (Yokohama, Japan, 2003), pp. 289294.Google Scholar
8.Liu, P.L. and Shang, J.K., Metall. Mater. Trans. A 31A, 2857 (2000).CrossRefGoogle Scholar
9.Jang, J.W., Kim, P.G., and Tu, K.N., J. Appl. Phis. 85, 8456 (1999).CrossRefGoogle Scholar
10.Ho, C.E., Shiau, L.C., and Kao, C.R., J. Electron. Mater. 31, 1264 (2002).CrossRefGoogle Scholar
11.Villars, P., Pearson's Handbook of Crystallographic Data for Intermetallic Phases (ASM International, Materials Park, OH, 1997), pp. 2514.Google Scholar
12.Hwang, C.W., Suganuma, K., Lee, J.G., and Mori, H., J. Electron. Mater. 32, 52 (2003).CrossRefGoogle Scholar
13.Massalski, T.B., Okamoto, H., Subramanian, P.R., and Kacprzak, L., Binary Alloy Phase Diagram, 2nd ed. (ASM International, Materials Park, OH, 1990), pp. 1481-1483, 28632864.Google Scholar