Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T13:40:07.104Z Has data issue: false hasContentIssue false

Interface effects on the properties of Cu–Nb nanolayered composites

Published online by Cambridge University Press:  07 October 2020

Qi An
Affiliation:
Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Engineering, Hebei University of Technology, Tianjin300130, China
Wenfan Yang
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang110016, China
Baoxi Liu*
Affiliation:
Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Engineering, Hebei University of Technology, Tianjin300130, China
Shijian Zheng*
Affiliation:
Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Engineering, Hebei University of Technology, Tianjin300130, China
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

Nanocrystalline metals possess high strength and outstanding resistance to irradiation damage. However, the high-density grain boundaries in nanocrystalline metals lead to low plasticity and poor thermal stability. In recent years, interface engineering has gradually become an important way to improve the comprehensive properties of nanocrystalline metals. In this paper, the interface structure, deformation mechanism, and physical properties of Cu–Nb nanolayered composites fabricated by physical vapor deposition and accumulative roll bonding are reviewed. Both Cu–Nb nanolayered composites possess semi-coherent interfaces. The nanolayered composites could achieve excellent resistance to irradiation damage since the interfaces are good sinks for the irradiation point defects. In addition, nanolayered metallic composites with abundant heterogeneous interfaces have better thermal stability compared to nanocrystalline metallic materials. Moreover, the interactions between dislocations and interfaces can be adjusted effectively through controlling the atomistic interface structure and alignment of slip systems across the interface, so as to achieve high strength and high plastic deformation ability simultaneously.

Type
Invited Feature Paper - REVIEW
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Gleiter, H.: Nanocrystalline materials. Prog. Mater Sci. 33, 223 (1989).CrossRefGoogle Scholar
Dalla Torre, F., Lapovok, R., Sandlin, J., Thomson, P.F., Davies, C.H.J., and Pereloma, E.V.: Microstructures and properties of copper processed by equal channel angular extrusion for 1–16 passes. Acta Mater. 52, 4819 (2004).CrossRefGoogle Scholar
Wang, Y.M., Wang, K., Pan, D., Lu, K., Hemker, K.J., and Ma, E.: Microsample tensile testing of nanocrystalline copper. Scr. Mater. 48, 1581 (2003).CrossRefGoogle Scholar
Lu, K., Lu, L., and Suresh, S.: Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science 324, 349 (2009).CrossRefGoogle ScholarPubMed
Ma, E.: Instabilities and ductility of nanocrystalline and ultrafine-grained metals. Scr. Mater. 49, 663 (2003).CrossRefGoogle Scholar
Koch, C.C.: Optimization of strength and ductility in nanocrystalline and ultrafine grained metals. Scr. Mater. 49, 657 (2003).CrossRefGoogle Scholar
Edmondson, P.D., Zhang, Y.W., Moll, S., Namavar, F., and Weber, W.J.: Irradiation effects on microstructure change in nanocrystalline ceria – Phase, lattice stress, grain size and boundaries. Acta Mater. 60, 5408 (2012).CrossRefGoogle Scholar
Ames, M., Markmann, J., Karos, R., Michels, A., Tschöpe, A., and Birringer, R.: Unraveling the nature of room temperature grain growth in nanocrystalline materials. Acta Mater. 56, 4255 (2008).CrossRefGoogle Scholar
Kapoor, M. and Thompson, G.B.: Role of atomic migration in nanocrystalline stability: Grain size and thin film stress states. Curr. Opin. Solid State Mater. Sci. 19, 138 (2015).CrossRefGoogle Scholar
Malow, T.R. and Koch, C.C.: Grain growth in nanocrystalline iron prepared by mechanical attrition. Acta Mater. 45, 2177 (1997).CrossRefGoogle Scholar
Andrievski, R.A.: Review of thermal stability of nanomaterials. J. Mater. Sci. 49, 1449 (2014).CrossRefGoogle Scholar
Lu, L., Shen, Y.F., Chen, X.H., Qian, L.H., and Lu, K.: Ultrahigh strength and high electrical conductivity in copper. Science 304, 422 (2004).CrossRefGoogle ScholarPubMed
Anderoglu, O., Misra, A., Wang, H., and Zhang, X.: Thermal stability of sputtered Cu films with nanoscale growth twins. J. Appl. Phys. 103, 094322 (2008).CrossRefGoogle Scholar
Lu, L., Chen, X.H., Huang, X.X., and Lu, K.: Revealing the maximum strength in nanotwinned copper. Science 323, 607 (2009).CrossRefGoogle ScholarPubMed
Han, W.Z., Demkowicz, M.J., Mara, N.A., Fu, E.G., Sinha, S., Rollett, A.D., Wang, Y.Q., Carpenter, J.S., Beyerlein, I.J., and Misra, A.: Design of radiation tolerant materials via interface engineering. Adv. Mater. 25, 6975 (2013).CrossRefGoogle ScholarPubMed
Zheng, S.J., Beyerlein, I.J., Carpenter, J.S., Kang, K., Wang, J., Han, W.Z., and Mara, N.A.: High-strength and thermally stable bulk nanolayered composites due to twin-induced interfaces. Nat. Commun. 4, 1 (2013).CrossRefGoogle ScholarPubMed
Yu, W.X., Liu, B.X., Cui, X.P., Dong, Y.C., Zhang, X., He, J.N., Chen, C.X., and Yin, F.X.: Revealing extraordinary strength and toughness of multilayer TWIP/maraging steels. Mater. Sci. Eng. A 727, 70 (2018).CrossRefGoogle Scholar
Zhang, B.Y., Liu, B.X., He, J.N., Fang, W., Zhang, F.Y., Zhang, X., Chen, C.X., and Yin, F.X.: Microstructure and mechanical properties of SUS304/Q235 multilayer steels fabricated by roll bonding and annealing. Mater. Sci. Eng. A 740, 92 (2019).CrossRefGoogle Scholar
Mara, N.A., Bhattacharyya, D., Hoagland, R.G., and Misra, A.: Tensile behavior of 40 nm Cu/Nb nanoscale multilayers. Scr. Mater. 58, 874 (2008).CrossRefGoogle Scholar
Liu, Y., Bufford, D., Wang, H., Sun, C., and Zhang, X.: Mechanical properties of highly textured Cu/Ni multilayers. Acta Mater. 59, 1924 (2011).CrossRefGoogle Scholar
Zheng, Y.G., Li, Q., Zhang, J.Y., Ye, H.F., Zhang, H.W., and Shen, L.M.: Hetero interface and twin boundary mediated strengthening in nano-twinned Cu//Ag multilayered materials. Nanotechnology 28, 415705 (2017).CrossRefGoogle ScholarPubMed
Fu, E.G., Li, N., Misra, A., Hoagland, R.G., Wang, H.Y., and Zhang, X.: Mechanical properties of sputtered Cu/V and Al/Nb multilayer films. Mater. Sci. Eng. A 493, 283 (2008).CrossRefGoogle Scholar
Wheeler, J.M., Raghavan, R., Chawla, V., Zechner, J., Utke, I., and Michler, J.: Failure mechanisms in metal–metal nanolaminates at elevated temperatures: Microcompression of Cu–W multilayers. Scr. Mater. 98, 28 (2015).CrossRefGoogle Scholar
Su, R., Neffati, D., Li, Q., Xue, S.C., Cho, J., Li, J., Ding, J., Zhang, Y.F., Fan, C.C., and Wang, H.Y.: Ultra-high strength and plasticity mediated by partial dislocations and defect networks: Part I: Texture effect. Acta Mater. 185, 181 (2020).CrossRefGoogle Scholar
Liu, B.X., Wang, S., Chen, C.X., Fang, W., Feng, J.H., Zhang, X., and Yin, F.X.: Interface characteristics and fracture behavior of hot rolled stainless steel clad plates with different vacuum degrees. Appl. Surf. Sci. 463, 121 (2019).CrossRefGoogle Scholar
Liu, B.X., Wang, S., Fang, W., Ma, J.L., Yin, F.X., He, J.N., Feng, J.H., and Chen, C.X.: Microstructure and mechanical properties of hot rolled stainless steel clad plate by heat treatment. Mater. Chem. Phys. 216, 460 (2018).CrossRefGoogle Scholar
Liu, B.X., An, Q., Yin, F.X., Wang, S., and Chen, C.X.: Interface formation and bonding mechanisms of hot-rolled stainless steel clad plate. J. Mater. Sci. 54, 11357 (2019).CrossRefGoogle Scholar
Ghalandari, L. and Moshksar, M.M.: High-strength and high-conductive Cu/Ag multilayer produced by ARB. J. Alloys Compd. 506, 172 (2010).CrossRefGoogle Scholar
Ma, X.L., Huang, C.X., Moering, J., Ruppert, M., Höppel, H.W., Göken, M., Narayan, J., and Zhu, Y.T.: Mechanical properties of copper/bronze laminates: Role of interfaces. Acta Mater. 116, 43 (2016).CrossRefGoogle Scholar
Sun, Y.F., Tsuji, N., Fujii, H., and Li, F.S.: Cu/Zr nanoscaled multi-stacks fabricated by accumulative roll bonding. J. Alloys Compd. 504, S443 (2010).CrossRefGoogle Scholar
Xu, S.H., Liu, Y., Yang, C., Zhao, H.L., Liu, B., Li, J.B., and Song, M.: Compositionally gradient Ti–Ta metal-metal composite with ultra-high strength. Mater. Sci. Eng. A 712, 386 (2018).CrossRefGoogle Scholar
Qin, L., Wang, J., Wu, Q., Guo, X.Z., and Tao, J.: In-situ observation of crack initiation and propagation in Ti/Al composite laminates during tensile test. J. Alloys Compd. 712, 69 (2017).CrossRefGoogle Scholar
Zhang, J.Y., Zhang, X., Liu, G., Zhang, G.J., and Sun, J.: Scaling of the ductility with yield strength in nanostructured Cu/Cr multilayer films. Scr. Mater. 63, 101 (2010).CrossRefGoogle Scholar
Zheng, S.J., Wang, J., Carpenter, J.S., Mook, W.M., Dickerson, P.O., Mara, N.A., and Beyerlein, I.J.: Plastic instability mechanisms in bimetallic nanolayered composites. Acta Mater. 79, 282 (2014).CrossRefGoogle Scholar
Zheng, S.J., Carpenter, J.S., McCabe, R.J., Beyerlein, I.J., and Mara, N.A.: Engineering interface structures and thermal stabilities via SPD processing in bulk nanostructured metals. Sci. Rep. 4, 4226 (2014).CrossRefGoogle ScholarPubMed
Beyerlein, I.J., Mayeur, J.R., McCabe, R.J., Zheng, S.J., Carpenter, J.S., and Mara, N.A.: Influence of slip and twinning on the crystallographic stability of bimetal interfaces in nanocomposites under deformation. Acta Mater. 72, 137 (2014).CrossRefGoogle Scholar
McCabe, R.J., Beyerlein, I.J., Carpenter, J.S., and Mara, N.A.: The critical role of grain orientation and applied stress in nanoscale twinning. Nat. Commun. 5, 1 (2014).CrossRefGoogle ScholarPubMed
Saito, Y., Utsunomiya, H., Tsuji, N., and Sakai, T.: Novel ultra-high straining process for bulk materials—Development of the accumulative roll-bonding (ARB) process. Acta Mater. 47, 579 (1999).CrossRefGoogle Scholar
Lee, S.B., LeDonne, J.E., Lim, S.C.V., Beyerlein, I.J., and Rollett, A.D.: The heterophase interface character distribution of physical vapor-deposited and accumulative roll-bonded Cu–Nb multilayer composites. Acta Mater. 60, 1747 (2012).CrossRefGoogle Scholar
Zeng, L.F., Gao, R., Fang, Q.F., Wang, X.P., Xie, Z.M., Miao, S., Hao, T., and Zhang, T.: High strength and thermal stability of bulk Cu/Ta nanolamellar multilayers fabricated by cross accumulative roll bonding. Acta Mater. 110, 341 (2016).CrossRefGoogle Scholar
Mo, T.Q., Chen, Z.J., Li, B.X., Huang, H.T., He, W.J., and Liu, Q.: Effect of cross rolling on the interface morphology and mechanical properties of ARBed AA1100/AA7075 laminated metal composites. J. Alloys Compd. 805, 617 (2019).CrossRefGoogle Scholar
Han, W.Z., Carpenter, J.S., Wang, J., Beyerlein, I.J., and Mara, N.A.: Atomic-level study of twin nucleation from face-centered-cubic/body-centered-cubic interfaces in nanolamellar composites. Appl. Phys. Lett. 100, 011911 (2012).CrossRefGoogle Scholar
Carpenter, J.S., Vogel, S.C., LeDonne, J.E., Hammon, D.L., Beyerlein, I.J., and Mara, N.A.: Bulk texture evolution of Cu–Nb nanolamellar composites during accumulative roll bonding. Acta Mater. 60, 1576 (2012).CrossRefGoogle Scholar
Carpenter, J.S., Liu, X., Darbal, A., Nuhfer, N.T., McCabe, R.J., Vogel, S.C., LeDonne, J.E., Rollett, A.D., Barmak, K., and Beyerlein, I.J.: A comparison of texture results obtained using precession electron diffraction and neutron diffraction methods at diminishing length scales in ordered bimetallic nanolamellar composites. Scr. Mater. 67, 336 (2012).CrossRefGoogle Scholar
Zheng, S.J., Beyerlein, I.J., Wang, J., Carpenter, J.S., Han, W.Z., and Mara, N.A.: Deformation twinning mechanisms from bimetal interfaces as revealed by in situ straining in the TEM. Acta Mater. 60, 5858 (2012).CrossRefGoogle Scholar
Beyerlein, I.J., Wang, J., Kang, K., Zheng, S.J., and Mara, N.A.: Twinnability of bimetal interfaces in nanostructured composites. Mater. Res. Lett. 1, 89 (2013).CrossRefGoogle Scholar
Zhang, K.Y., Embury, J.D., Han, K., and Misra, A.: Transmission electron microscopy investigation of the atomic structure of interfaces in nanoscale Cu–Nb multilayers. Philos. Mag. 88, 2559 (2008).CrossRefGoogle Scholar
Beyerlein, I.J., Mara, N.A., Wang, J., Carpenter, J.S., Zheng, S.J., Han, W.Z., Zhang, R.F., Kang, K., Nizolek, T., and Pollock, T.M.: Structure–property–functionality of bimetal interfaces. JOM 64, 1192 (2012).CrossRefGoogle Scholar
Wang, J., Kang, K., Zhang, R.F., Zheng, S.J., Beyerlein, I.J., and Mara, N.A.: Structure and property of interfaces in ARB Cu/Nb laminated composites. JOM 64, 1208 (2012).CrossRefGoogle Scholar
Li, N., Wang, J., Misra, A., and Huang, J.Y.: Direct observations of confined layer slip in Cu/Nb multilayers. Microsc. Microanal. 18, 1155 (2012).CrossRefGoogle ScholarPubMed
Wang, J., Hoagland, R.G., and Misra, A.: Phase transition and dislocation nucleation in Cu–Nb layered composites during physical vapor deposition. J. Mater. Res. 23, 1009 (2008).CrossRefGoogle Scholar
Fu, E.G., Misra, A., Wang, H.Y., Shao, L., and Zhang, X.: Interface enabled defects reduction in helium ion irradiated Cu/V nanolayers. J. Nucl. Mater. 407, 178 (2010).CrossRefGoogle Scholar
Chen, D., Li, N., Yuryev, D., Wen, J., Baldwin, K., Demkowicz, M.J., and Wang, Y.Q.: Imaging the in-plane distribution of helium precipitates at a Cu/V interface. Mater. Res. Lett. 5, 335 (2017).CrossRefGoogle Scholar
Wei, S.Y., Zhang, L.F., Zheng, S.J., Wang, X.P., and Wang, J.W.: Deformation-induced interfacial transition zone in Cu/V nanolamellar multilayers. Scr. Mater. 159, 104 (2019).CrossRefGoogle Scholar
Liu, Y., Bufford, D.C., Rios, S., Wang, H.Y., Chen, J., Zhang, J.Y., and Zhang, X.: A formation mechanism for ultra-thin nanotwins in highly textured Cu/Ni multilayers. J. Appl. Phys. 111, 073526 (2012).CrossRefGoogle Scholar
Wang, J. and Misra, A.: An overview of interface-dominated deformation mechanisms in metallic multilayers. Curr. Opin. Solid State Mater. Sci. 15, 20 (2011).CrossRefGoogle Scholar
Shen, T.D., Schwarz, R.B., and Zhang, X.: Bulk nanostructured alloys prepared by flux melting and melt solidification. Appl. Phys. Lett. 87, 141906 (2005).CrossRefGoogle Scholar
Wang, J., Hoagland, R.G., Hirth, J.P., and Misra, A.: Atomistic modeling of the interaction of glide dislocations with “weak” interfaces. Acta Mater. 56, 5685 (2008).CrossRefGoogle Scholar
Demkowicz, M.J. and Thilly, L.: Structure, shear resistance and interaction with point defects of interfaces in Cu–Nb nanocomposites synthesized by severe plastic deformation. Acta Mater. 59, 7744 (2011).CrossRefGoogle Scholar
Beyerlein, I.J., Mara, N.A., Carpenter, J.S., Nizolek, T., Mook, W.M., Wynn, T.A., McCabe, R.J., Mayeur, J.R., Kang, K., and Zheng, S.J.: Interface-driven microstructure development and ultra high strength of bulk nanostructured Cu–Nb multilayers fabricated by severe plastic deformation. J. Mater. Res. 28, 1799 (2013).CrossRefGoogle Scholar
Monclús, M.A., Zheng, S.J., Mayeur, J.R., Beyerlein, I.J., Mara, N.A., Polcar, T., Llorca, J., and Molina-Aldareguía, J.M.: Optimum high temperature strength of two-dimensional nanocomposites. APL Mater. 1, 052103 (2013).CrossRefGoogle Scholar
Misra, A., Verdier, M., Lu, Y.C., Kung, H., Mitchell, T.E., Nastasi, M., and Embury, J.D.: Structure and mechanical properties of Cu-X (X=Nb, Cr, Ni) nanolayered composites. Scr. Mater. 39, 555 (1998).CrossRefGoogle Scholar
Misra, A., Hirth, J.P., and Hoagland, R.G.: Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater. 53, 4817 (2005).CrossRefGoogle Scholar
Zhu, X.Y., Luo, J.T., Zeng, F., and Pan, F.: Microstructure and ultrahigh strength of nanoscale Cu/Nb multilayers. Thin Solid Films 520, 818 (2011).CrossRefGoogle Scholar
Snel, J., Monclús, M.A., Castillo-Rodriguez, M., Mara, N., Beyerlein, I.J., Llorca, J., and Molina-Aldareguia, J.M.: Deformation mechanism map of Cu/Nb nanoscale metallic multilayers as a function of temperature and layer thickness. JOM 69, 2214 (2017).CrossRefGoogle Scholar
Wang, Z.Q., Beyerlein, I.J., and LeSar, R.: Plastic anisotropy in fcc single crystals in high rate deformation. Int. J. Plast. 25, 26 (2009).CrossRefGoogle Scholar
Wang, Z.Q. and Beyerlein, I.J.: An atomistically-informed dislocation dynamics model for the plastic anisotropy and tension–compression asymmetry of BCC metals. Int. J. Plast. 27, 1471 (2011).CrossRefGoogle Scholar
Wei, M.Z., Xu, L., Shi, J.J., Pan, G.J., Cao, Z.H., and Meng, X.K.: Achieving high strength and high electrical conductivity in Ag/Cu multilayers. Appl. Phys. Lett. 106, 011604 (2015).CrossRefGoogle Scholar
Wen, S.P., Zong, R.L., Zeng, F., Gao, Y., and Pan, F.: Evaluating modulus and hardness enhancement in evaporated Cu/W multilayers. Acta Mater. 55, 345 (2007).CrossRefGoogle Scholar
Mara, N.A., Bhattacharyya, D., Hirth, J.P., Dickerson, P., and Misra, A.: Mechanism for shear banding in nanolayered composites. Appl. Phys. Lett. 97, 021909 (2010).CrossRefGoogle Scholar
Mara, N.A., Bhattacharyya, D., Dickerson, P., Hoagland, R.G., and Misra, A.: Deformability of ultrahigh strength 5 nm Cu/Nb nanolayered composites. Appl. Phys. Lett. 92, 231901 (2008).CrossRefGoogle Scholar
Li, N., Mara, N.A., Wang, J., Dickerson, P., Huang, J.Y., and Misra, A.: Ex situ and in situ measurements of the shear strength of interfaces in metallic multilayers. Scr. Mater. 67, 479 (2012).CrossRefGoogle Scholar
Li, J., Lu, W.J., Gibson, J.S.K.L., Zhang, S.Y., Kortekerzel, S., and Raabe, D.: Compatible deformation and extra strengthening by heterogeneous nanolayer composites. Scr. Mater. 179, 30 (2020).CrossRefGoogle Scholar
Cao, Z.H., Sun, W., Ma, Y.J., Li, Q., and Meng, X.K.: Strong and plastic metallic composites with nanolayered architectures. Acta Mater. 195, 240 (2020).CrossRefGoogle Scholar
Pan, Z.L. and Rupert, T.J.: Amorphous intergranular films as toughening structural features. Acta Mater. 89, 205 (2015).CrossRefGoogle Scholar
Guo, W., Jagle, E.A., Yao, J., Maier, V., Kortekerzel, S., Schneider, J.M., and Raabe, D.: Intrinsic and extrinsic size effects in the deformation of amorphous CuZr/nanocrystalline Cu nanolaminates. Acta Mater. 80, 94 (2014).CrossRefGoogle Scholar
Fan, Z., Xue, S., Wang, J., Yu, K.Y., Wang, H., and Zhang, X.: Unusual size dependent strengthening mechanisms of Cu/amorphous CuNb multilayers. Acta Mater. 120, 327 (2016).CrossRefGoogle Scholar
Wang, Y.M., Li, J., Hamza, A.V., and Barbee, T.W.: Ductile crystalline–amorphous nanolaminates. Proc. Natl. Acad. Sci. USA 104, 11155 (2007).CrossRefGoogle ScholarPubMed
Samaras, M.: Multiscale modelling: the role of helium in iron. Mater. Today. 12, 46 (2009).CrossRefGoogle Scholar
Trinkaus, H.: Modeling of helium effects in metals: High temperature embrittlement. J. Nucl. Mater. 133, 105 (1985).CrossRefGoogle Scholar
Knapp, J.A., Follstaedt, D.M., and Myers, S.M.: Hardening by bubbles in He-implanted Ni. J. Appl. Phys. 103, 013518 (2008).CrossRefGoogle Scholar
Singh, B.N.: Atomic displacements and defect accumulation during irradiation with energetic particles: An autobiographical review. Radiat. Eff. Defects Solids. 148, 383 (1999).CrossRefGoogle Scholar
Odette, G.R. and Hoelzer, D.T.: Irradiation-tolerant nanostructured ferritic alloys: Transforming helium from a liability to an asset. JOM 62, 84 (2010).CrossRefGoogle Scholar
Kashinath, A., Misra, A., and Demkowicz, M.J.: Stable storage of helium in nanoscale platelets at semicoherent interfaces. Phys. Rev. Lett. 110, 086101 (2013).CrossRefGoogle ScholarPubMed
Demkowicz, M.J., Hoagland, R.G., and Hirth, J.P.: Interface structure and radiation damage resistance in Cu-Nb multilayer nanocomposites. Phys. Rev. Lett. 100, 136102 (2008).CrossRefGoogle ScholarPubMed
Zheng, S.J., Shao, S., Zhang, J., Wang, Y.Q., Demkowicz, M.J., Beyerlein, I.J., and Mara, N.A.: Adhesion of voids to bimetal interfaces with non-uniform energies. Sci. Rep. 5, 1 (2015).CrossRefGoogle ScholarPubMed
Yang, L.X., Zheng, S.J., Zhou, Y.T., Zhang, J., Wang, Y.Q., Jiang, C.B., Mara, N.A., Beyerlein, I.J., and Ma, X.L.: Effects of He radiation on cavity distribution and hardness of bulk nanolayered Cu-Nb composites. J. Nucl. Mater. 487, 311 (2017).CrossRefGoogle Scholar
Zhang, J.Y., Zeng, F.L., Wu, K., Wang, Y.Q., Liang, X.Q., Liu, G., Zhang, G.J., and Sun, J.: Size-dependent plastic deformation characteristics in He-irradiated nanostructured Cu/Mo multilayers: Competition between dislocation-boundary and dislocation-bubble interactions. Mater. Sci. Eng. A 673, 530 (2016).CrossRefGoogle Scholar
Li, N., Nastasi, M., and Misra, A.: Defect structures and hardening mechanisms in high dose helium ion implanted Cu and Cu/Nb multilayer thin films. Int. J. Plast. 32, 1 (2012).CrossRefGoogle Scholar
Kung, H., Jervis, T.R., Hirvonen, J.P., Mitchell, T., and Nastasi, M.: High-temperature structural stability of MoSi2-based nanolayer composites. J. Vac. Sci. Technol. B 13, 1126 (1995).CrossRefGoogle Scholar
Lee, H.J., Kwon, K.W., Ryu, C., and Sinclair, R.: Thermal stability of a Cu/Ta multilayer: An intriguing interfacial reaction. Acta Mater. 47, 3965 (1999).CrossRefGoogle Scholar
Barnett, S.A., Madan, A., Kim, I., and Martin, K.: Stability of nanometer-thick layers in hard coatings. MRS Bull. 28, 169 (2003).CrossRefGoogle Scholar
Wei, X.Z., Zhou, Q., Xu, K.W., Huang, P., Wang, F., and Lu, T.J.: Enhanced hardness via interface alloying in nanoscale Cu/Al multilayers. Mater. Sci. Eng. A 726, 274 (2018).CrossRefGoogle Scholar
Misra, A. and Hoagland, R.G.: Effects of elevated temperature annealing on the structure and hardness of copper/niobium nanolayered films. J. Mater. Res. 20, 2046 (2005).CrossRefGoogle Scholar
Yang, W.F., Beyerlein, I.J., Jin, Q.Q., Ge, H.L., Xiong, T., Yang, L.X., Pang, J.C., Zhou, Y.T., Shao, X.H., Zhang, B., Zheng, S.J., and Ma, X.L.: Strength and ductility of bulk Cu/Nb nanolaminates exposed to extremely high temperatures. Scr. Mater. 166, 73 (2019).CrossRefGoogle Scholar
Nizolek, T., Beyerlein, I.J., Mara, N.A., Avallone, J.T., and Pollock, T.M.: Tensile behavior and flow stress anisotropy of accumulative roll bonded Cu–Nb nanolaminates. Appl. Phys. Lett. 108, 051903 (2016).CrossRefGoogle Scholar
Ma, Y.J., Wei, M.Z., Sun, C., Cao, Z.H., and Meng, X.K.: Length scale effect on the thermal stability of nanoscale Cu/Ag multilayers. Mater. Sci. Eng. A 686, 142 (2017).CrossRefGoogle Scholar