Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T10:41:43.105Z Has data issue: false hasContentIssue false

Interface characteristics affecting electrical properties of Y-doped SiC

Published online by Cambridge University Press:  31 January 2011

F. Siegelin
Affiliation:
Institute for Materials Research (IMA I), University of Bayreuth, D-95440 Bayreuth, Germany
H-J. Kleebe
Affiliation:
Colorado School of Mines, Metallurgical and Materials Engineering Department, Golden, Colorado 80401
L.S. Sigl
Affiliation:
Wacker Ceramics, D-87437 Kempten, Germany
Get access

Abstract

Liquid-phase sintered SiC, doped with 3 vol% AlN, Al2OC, Y3Al5O12, revealed a variation in electrical resistivity of more than five orders of magnitude (<102-107 Ω cm) upon slight variations in the sintering process. The materials were characterized using various transmission electron microscopy techniques such as high-resolution transmission electron microscopy (HRTEM), Fresnel fringe imaging, analytical electron microscopy, and electron holography. The main focus of this study was to verify whether there is a correlation between interface structure and electrical resistivity. Scanning electron microscopy (SEM) of polished and plasma-etched surfaces showed interface features similar to those observed in Si3N4 ceramics containing amorphous grain-boundary films. Such films are expected to act as an insulating barrier for electric current. However, in contrast to the SEM results, HRTEM of SiC grain boundaries revealed no intergranular film in any of the SiC materials studied. Elemental analysis (i.e., energy dispersive x-ray and electron energy loss spectroscopy) of these “clean” SiC interfaces showed the segregation of secondary phase elements at grain boundaries. Electron holography and the Fresnel fringe technique were used to determine the change in the mean inner potential across SiC interfaces, which could be associated with the spatial charge distribution of a double Schottky barrier. The height of the potential barrier correlates with the electrical resistivity recorded via impedance spectroscopy.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Persson, C. and Lindefelt, U., J. Appl. Phys. 82, 5496 (1997).CrossRefGoogle Scholar
2.Glass, R.C., Henshall, D., Tsvetkov, V.F., and Carter, C.H., Jr., Phys. Stat. Sol. B 202, 149 (1997).3.0.CO;2-M>CrossRefGoogle Scholar
3.Hobgood, H.M., Glass, R.C., Augustine, G., Hopkins, R.H., Jenny, J., Skowronski, M., Mitchel, W.C., and Roth, M., Appl. Phys. Lett. 66, 1364 (1995).CrossRefGoogle Scholar
4.Jenny, J.R., Skowronski, M., Mitchel, W.C., Hobgood, H.M., Glass, R.C., Augustine, G., and Hopkins, R.H., J. Appl. Phys. 78, 3839 (1995).CrossRefGoogle Scholar
5.Lee, R.R. and Wei, W.C., Ceram. Eng. Sci. Proc. 11, 1094 (1990).CrossRefGoogle Scholar
6.Kleebe, H-J., J. Eur. Ceram. Soc. 10, 151 (1992).CrossRefGoogle Scholar
7.Keppeler, M., Reichert, H-G., Broadley, J.M., Thurn, G., Wiedmann, I., and Aldinger, F., J. Eur. Ceram. Soc. 18, 521 (1998).CrossRefGoogle Scholar
8.Lee, S.G., Kim, Y-W., and Mitomo, M., J. Am. Ceram. Soc. 84, 1347 (2001).CrossRefGoogle Scholar
9.Rixecker, G., Wiedmann, I., Rosinus, A., and Aldinger, F., J. Eur. Ceram. Soc. 21, 1013 (2001).CrossRefGoogle Scholar
10.Kim, Y-W., Mitomo, M., and Nishimura, T., J. Am. Ceram. Soc. 85, 1007 (2002).CrossRefGoogle Scholar
11.Padture, N.P., J. Am. Ceram. Soc. 77, 519 (1994).CrossRefGoogle Scholar
12.Cao, J.J., Chan, W.J. Moberly, Jonghe, L.C. De, Gilbert, C.J., and Ritchie, R.O., J. Am. Ceram. Soc. 79, 461 (1996).CrossRefGoogle Scholar
13.Omori, M. and Takei, H., J. Am. Ceram. Soc. 65, C92 (1982).CrossRefGoogle Scholar
14.Omori, M. and Takei, H., U.S. Patent No. 4 502 983 (1985).Google Scholar
15.Omori, M. and Takei, H., U.S. Patent No. 4 564 490 (1986).Google Scholar
16.Sigl, L.S. and Kleebe, H-J., J. Am. Ceram. Soc. 76, 773 (1993).CrossRefGoogle Scholar
17.Cutler, R.A and Jackson, T.B., in Ceramic Materials and Components for Engines, Proceedings of the Third International Symposium, edited by Tennery, V.J (American Ceramic Society, Westerville, OH, 1989), pp. 309318.Google Scholar
18.Böcker, W.D.G. and Hamminger, R.J., in Pulvermetallurgie in Wissenschaft und Praxis, Vol. 6, edited by Kolaska, H. (Verlag Schmid GmbH, Freiburg i. Br., FRG, 1990), pp. 291317.Google Scholar
19.Mulla, M.A. and Krstic, V.D., Am. Ceram. Bull. 70, 439 (1991).Google Scholar
20.Negita, K., J. Am. Ceram. Soc. 69, C308 (1986).CrossRefGoogle Scholar
21.Mulla, M.A. and Krstic, V.D., Acta Metall. Mater. 42, 303 (1994).CrossRefGoogle Scholar
22.Padture, N.P. and Lawn, B.R., J. Am. Ceram. Soc. 77, 2518 (1994).CrossRefGoogle Scholar
23.Huang, J.L., Hurford, A.C., Cutler, R.A., and Virkar, A.V., J. Mater. Sci. 21, 1448 (1986).CrossRefGoogle Scholar
24.Grande, T., Sommerset, H., Hagen, E., Wiik, K., and Einarsrud, M-A., J. Am. Ceram. Soc. 80, 1047 (1997).CrossRefGoogle Scholar
25.Winn, E.J. and Clegg, W.J., J. Am. Ceram. Soc. 82, 3466 (1999).CrossRefGoogle Scholar
26.Pujar, V.V., Jensen, R.P., and Padture, N.P., J. Mater. Sci. Lett. 19, 1011 (2000).CrossRefGoogle Scholar
27.Jun, H-W., Lee, H-W., Kim, G-H., Song, H., and Kim, B-H., Ceram. Eng. Sci. Proc. 18, 487 (1997).CrossRefGoogle Scholar
28.Loehman, R.E., J. Am. Ceram. Soc. 62, 491 (1979).CrossRefGoogle Scholar
29.Sakka, S., J. Non-Cryst. Solids 181, 215 (1995).CrossRefGoogle Scholar
30.Pezzotti, G., Nishimura, H., Ota, K., and Kleebe, H-J., J. Am. Ceram. Soc. 84, 2371 (2001).CrossRefGoogle Scholar
31.Robert, P.O., Fouletier, J., and Menneron, L., J. Eur. Ceram. Soc. 19, 875 (1999).CrossRefGoogle Scholar
32.MacDonald, J.R., Solid State Ionics 13, 147 (1984).CrossRefGoogle Scholar
33.Hurt, R.L. and MacDonald, J.R., Solid State Ionics 20, 111 (1986).CrossRefGoogle Scholar
34.Clarke, D.R., J. Am. Ceram. Soc. 70, 15 (1987).CrossRefGoogle Scholar
35.Kleebe, H-J., J. Eur. Ceram. Soc. 10, 151 (1992).CrossRefGoogle Scholar
36.Moberlychan, W.J. and Jonghe, L.C. De, Acta. Met. 46, 2471 (1998).CrossRefGoogle Scholar
37.Turan, S. and Knowles, K.M., Mater. Sci. Forum 294–296, 313 (1999).Google Scholar
38.Carpenter, R.W., Braue, W., and Cutler, R.A., J. Mater. Res. 6, 1937 (1991).CrossRefGoogle Scholar
39.Bartsch, M., Messerschmidt, U., Appel, F., and Werner, P., in Electron Microscopy in Plasticity and Fracture Research of Materials, edited by Messerschmidt, U., Appel, F., Heydenreich, J., and Schmidt, V. (Academic-Verlag, Berlin, Germany, 1989), pp. 239244.CrossRefGoogle Scholar
40.Clarke, D.R., Ultramicroscopy 4, 33 (1979).CrossRefGoogle Scholar
41.Krivanek, O.L., Shaw, T.M., and Thomas, G., J. Appl. Phys. 50, 4223 (1979).CrossRefGoogle Scholar
42.Cinibulk, M.K., Kleebe, H-J., and Rühle, M., J. Am. Ceram. Soc. 76, 426 (1993).CrossRefGoogle Scholar
43.Ness, J.N., Stobbs, W.M., and Page, T.F., Phil. Mag. A 54, 679 (1986).CrossRefGoogle Scholar
44.Clarke, D.R., Ultramicroscopy 4, 33 (1979).CrossRefGoogle Scholar
45.Jin, Q., Wilkinson, D.S., and Weatherly, G.C., J. Am. Ceram. Soc. 18, 2281 (1998).CrossRefGoogle Scholar
46.Ross, F.M. and Stobbs, W.M., Phil. Mag. 63, 37 (1991).CrossRefGoogle Scholar
47.Gabor, D., Proc. Phys. Soc. A 197, 454 (1949).Google Scholar
48.Möllenstedt, G. and Düker, H., Zeitschrift für Physik 145, 377 (1956).CrossRefGoogle Scholar
49.Lichte, H., “Bildebenen-Off-Axis Elektronenholographie atomarer Strukturen,” Habilitationsschrift Universität Tübingen (University of Tübingen, Tübingen, Germany, 1987).Google Scholar
50.Troffer, T., Schadt, M., Frank, T., Ith, H., Pensl, G., Heindl, J., Strunk, H.P., and Maier, M., Phys. Stat. Sol. A 162, 277 (1997).3.0.CO;2-C>CrossRefGoogle Scholar
51.Gajdardziska-Josifovska, M. and Carim, A.H., in Introduction to Electron Holography, edited by Völkl, E., Allard, L.F., and Joy, D.C. (Kluwer Academic, New York, 1999), pp. 267293.CrossRefGoogle Scholar
52.Ravikumar, V., Rodrigues, R.P., and Dravid, V.P., Phys. Rev. Lett. 75, 4063 (1995).CrossRefGoogle Scholar
53.Clarke, D.R., J. Am. Ceram. Soc. 82, 485 (1999).CrossRefGoogle Scholar
54.Pike, G., Semiconducting Polycrystalline Ceramics, in Material Science and Technology (VCH Verlagsgesellschaft, Weinheim, Germany, 1994), pp. 731753Google Scholar
55.Clarke, D.R., J. Am. Ceram. Soc. 82, 485 (1999).CrossRefGoogle Scholar
56.Ravikumar, V., Rodrigues, R.P., and Dravid, V.P., J. Am. Ceram. Soc. 80, 1131 (1997).CrossRefGoogle Scholar