Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T05:44:41.687Z Has data issue: false hasContentIssue false

Interdiffusion reactions in Ni/Ta multilayers studied by x-ray diffraction

Published online by Cambridge University Press:  31 January 2011

Mark A. Hollanders
Affiliation:
Laboratory of Metallurgy, Delft University of Technology, Rotterdamseweg 137, 2628 AL Delft, The Netherland
Caroline G. Duterloo
Affiliation:
Laboratory of Metallurgy, Delft University of Technology, Rotterdamseweg 137, 2628 AL Delft, The Netherland
Barend J. Thijsse
Affiliation:
Laboratory of Metallurgy, Delft University of Technology, Rotterdamseweg 137, 2628 AL Delft, The Netherland
Eric J. Mittemeijer
Affiliation:
Laboratory of Metallurgy, Delft University of Technology, Rotterdamseweg 137, 2628 AL Delft, The Netherland
Get access

Abstract

Diffusion-induced phase transformations were studied in Ni/β-Ta multilayers between 523 K and 823 K, primarily using x-ray diffraction. The multilayers had a modulation length, A, of 20.3 nm and a composition of Ni48Ta52. They were polycrystalline without coherency between the Ni and Ta sublayers. Upon annealing at relatively low temperatures (up to 723 K) Ta dissolved in crystalline Ni, concurrently with the formation of an amorphous phase. The interdiffusion reactions did not take place only at the Ni/Ta interfaces, but also along the grain boundaries in the sublayers. The chemical diffusion coefficient in the amorphous phase was determined at 673 K, using a previously developed method. The results were compared with experiments on Ni/Ti multilayers, which show similar reactions. At 723 K and higher temperatures the fcc (Ni, Ta) solid solution transformed into the stable Ni3Ta compound.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Delhez, R., de Keijser, Th. H., Mittemeijer, E. J., Thijsse, B. J., Hollanders, M. A., Loopstra, O. B., and Sloof, W. G., Aust. J. Phys. 41, 261 (1988).CrossRefGoogle Scholar
2.Schwarz, R. B. and Johnson, W. L., Phys. Rev. Lett. 51, 415 (1983).CrossRefGoogle Scholar
3.Schwarz, R. B., Wong, K., and Johnson, W. L., J. Non-Cryst. Solids 61–62, 129 (1984).CrossRefGoogle Scholar
4.Pampus, K., Bøttiger, J., Torp, B., Schröder, H., and Samwer, K., Phys. Rev. B 35, 7010 (1987).CrossRefGoogle Scholar
5.Highmore, R. J., Evetts, J. E., Greer, A. L., and Somekh, R. E., Appl. Phys. Lett. 50, 566 (1987).CrossRefGoogle Scholar
6.Clemens, B.M., Phys. Rev. B 33, 7615 (1986).CrossRefGoogle Scholar
7.Jongste, J. F., Hollanders, M. A., Thijsse, B. J., and Mittemeijer, E. J., Mater. Sci. Eng. 97 101104 (1988).CrossRefGoogle Scholar
8.Van Rossum, M.Nicolet, A., and Johnson, W. L., Phys. Rev. B 29, 5498 (1984).CrossRefGoogle Scholar
9.Clemens, B. M. and Sucholsky, M. J., Appl. Phys. Lett. 47, 943 (1985).CrossRefGoogle Scholar
10.Guilmin, P., Guyot, P., and Marchal, G., Phys. Lett. A 109, 174 (1985).CrossRefGoogle Scholar
11.Johnson, W. L., Prog. Mater. Sci. 30, 81 (1986).CrossRefGoogle Scholar
12.Hollanders, M. A., Thijsse, B. J., and Mittemeijer, E. J., Phys. Rev. B 42, 5481 (1990).CrossRefGoogle Scholar
13.De Boer, F. R., Boom, R., Mattens, W. C. M., Miedema, A. R., and Niessen, A. K., Cohesion in Metals (North-Holland Physics Publishing, Amsterdam, 1988).Google Scholar
14.Nash, A. and Nash, P., Bull. Alloy Phase Diag. 5, 259 (1984).CrossRefGoogle Scholar
15.Sheng, T. T. and Marcus, R. B., J. Electrochem. Soc. 127, 737 (1980).CrossRefGoogle Scholar
16.Warren, B. E., X-Ray Diffraction (Addison-Wesley Publishing Company, Reading, MA, 1969), p. 251.Google Scholar
17.Hollanders, M. A. and Thijsse, B. J., J. Less-Comm. Met. 140, 33 (1988).CrossRefGoogle Scholar
18.Miceli, P. F., Neumann, D. A., and Zabel, H., Appl. Phys. Lett. 48, 24 (1986).CrossRefGoogle Scholar
19.Powder Diffraction Data, JCPDS, Swarthmore, PA.Google Scholar
20.Read, M. H. and Altman, C., Appl. Phys. Lett. 7, 51 (1965).CrossRefGoogle Scholar
21.Feinstein, L. G. and Huttemann, R. D., Thin Solid Films 16, 129 (1973).CrossRefGoogle Scholar
22. Ref. 16, p. 30.Google Scholar
23.Bracewell, R. B., The Fourier Transform and its Applications, 2 ed. (McGraw-Hill Kogakusha, Tokyo, 1978), p. 433.Google Scholar
24.Kubaschewski, O. and Speidel, H., J. Inst. Met. 75, 417 (1949).Google Scholar
25.Chessin, H., Arajs, S., and Colvin, R. V., J. Appl. Phys. 35, 2419 (1964).CrossRefGoogle Scholar
26.Ruhl, R. C., Giessen, B. C., Cohen, M., and Grant, N. J., J. Less-Comm. Met. 13, 611 (1967).CrossRefGoogle Scholar
27.Larson, J. M., Taggart, R., and Polonis, D. H., Metall. Trans. 1, 485 (1970).CrossRefGoogle Scholar
28.International Tables for X-ray Crystallography, Vol. IV, Physical and Chemical Tables (The Kynoch Press, Birmingham, Engl 1962), p. 201.Google Scholar
29.Giessen, B. C. and Grant, N. J., Acta Metall. 15, 871 (1967).CrossRefGoogle Scholar
30.Giessen, B. C., Madhara, M., Polk, D. E., and J. VanderSande, Mater. Sci. Eng. 23, 145 (1976).CrossRefGoogle Scholar
31.Sommer, F., Lang, T., and Predel, B., Z. Metallk. 78, 648 (1987).Google Scholar
32.Buschow, K. H. J., J. Phys. F: Met. Phys. 13, 563 (1983).CrossRefGoogle Scholar