Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T09:25:19.006Z Has data issue: false hasContentIssue false

Interdiffusion in Ni80Fe20/Mo magnetic multilayers prepared by magnetron sputtering

Published online by Cambridge University Press:  31 January 2011

X. Y. Zhang
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Beijing 100080, and College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066000, People's Republic of China
Y. F. Xu
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
M. L. Yan
Affiliation:
State Key Laboratory of Magnetism, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
L. M. Chao
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
M. Zhang
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
J. H. Zhao
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
W. Y. Lai
Affiliation:
State Key Laboratory of Magnetism, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
W. K. Wang
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Beijing 100080, and College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066000, People's Republic of China
Get access

Abstract

The interdiffusion in Ni80Fe20/Mo magnetic multilayers with a repeat length of 3.4 nm has been investigated using x-ray diffraction (XRD) technology. The multilayers have been fabricated by using a magnetron sputtering system. The decay with annealing time in the intensity of the first-order x-ray satellite peak arising from the composition modulation was used to determine the effective interdiffusion coefficient Dλ. As the annealing temperature is below 483 K, the interdiffusion is found to be relatively slow (Dλ < 8.88 × 10−25 m2/s). This result suggests that the Ni80Fe20/Mo multilayers have a strong resistance to the atomic interdiffusion between sublayers. The diffusivities over the temperature range 343–683 K have an Arrhenius-type temperature dependence with a pre-exponential factor D0 = (4.02 ± 1.21) × 10−22 m2/s and an activation enthalpy of about 0.26 ± 0.08 eV. The much lower activation enthalpy is attributed to the coherence strains existing in the multilayers.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Baibich, M.N., Broto, J.M., Fert, A., Nguyen Van Dau, F., Petroff, F., Eitenne, P., Creuzet, G.. Friederich, A., and Chazelas, J., Phys. Rev. Lett. 61, 2472 (1988).CrossRefGoogle Scholar
2.Grunberg, P., Schreiber, R., Pang, Y., Brodsky, M. B., and Sowers, H., Phys. Rev. Lett. 57, 2442 (1986).CrossRefGoogle Scholar
3.Petroff, F., Barthelemy, A., Mosca, D. H., Lottis, D. K., Fert, A., Schroeder, P. A., Pratt, W. P. Jr, Laloee, R., and Lequien, S., Phys. Rev. B 44, 5355 (1991).CrossRefGoogle Scholar
4.Mosca, D. H., Petroff, F., Fert, A., Schroeder, P. A., Pratt, W.P. Jr, and Laloee, R., J. Magn. Magn. Mater. 94, L1 (1991).Google Scholar
5.Yan, M. L., Lai, W. Y., and Yin, L., and Liou, S. H., J. Appl. Phys. 81, 4782 (1997).CrossRefGoogle Scholar
6.McIntyre, P. C., Wu, D. T., and Nastasi, M., J. Appl. Phys. 81, 637 (1997).CrossRefGoogle Scholar
7.Shinjo, T. and Yamamoto, H., J. Phys. Soc. Jpn. 9, 3061 (1990).CrossRefGoogle Scholar
8.Dieny, B., Speriosu, V. S., Parkin, S. S. P., Gurney, B. A., Wilhoit, D. R., and Mauri, D., Phys. Rev. B 43, 1297 (1991).Google Scholar
9.Parkin, S. S. P., Appl. Phys. Lett. 60, 512 (1992).CrossRefGoogle Scholar
10.Yan, M. L., Lai, W. Y., Luo, G. M., and Mai, Z. H., J. Phys. Condens. Matter. 8, L711 (1996).Google Scholar
11.Yan, M. L., Shan, Z. S., Sellmyer, D. J., and Lai, W. Y., J. Appl. Phys. 81, 4785 (1997).CrossRefGoogle Scholar
12.Fullerton, E. E., Kelly, D. M., Guimpel, J., Schuller, I. K., and Bruynseraede, Y., Phys. Rev. Lett. 68, 859 (1992).CrossRefGoogle Scholar
13.Huai, Y., Cochrane, R. W., and Sutton, M., J. Appl. Phys. 73, 5530 (1993).CrossRefGoogle Scholar
14.Parkin, S. S. P., Appl. Phys. Lett. 60, 512 (1992).CrossRefGoogle Scholar
15.Zhang, H., Cochrane, R.W., Huai, Y., Mao, M., Bian, X., and Muir, W.B., J. Appl. Phys. 75, 6534 (1994).CrossRefGoogle Scholar
16.de Fontaine, D., Local Atomic Arrangements Studied by X-ray Diffraction (Gordon and Breach Science Publishers, New York, 1966), p. 51.Google Scholar
17.Philofsky, E. M. and Hilliard, J. E., J. Appl. Phys. 40, 2198 (1969).Google Scholar
18.Fullerton, Eric E., Schuller, Ivan K., Vanderstraeten, H., and Bruynseraede, Y., Phys. Rev. B 45, 9292 (1992).CrossRefGoogle Scholar
19.Gree, A. L. and Spaepen, F., in Synthetic Modulated Structure Materials, edited by Chang, L. L. and Geissen, B.C. (Academic, New York, 1985), Chap. 11.Google Scholar
20.Wang, W.K., Wang, W.H., and Bai, H.Y., Mater. Sci. Eng. A179/A180, 234 (1994).Google Scholar
21.Jeon, I. J., Hong, J. H., and Lee, Y.P., J. Appl. Phys. 75, 7825 (1994).CrossRefGoogle Scholar
22.Prokes, S. M. and Spaepen, F., Appl. Phys. Lett. 47, 234 (1985).Google Scholar
23.Cook, H. E. and Hilliard, J. E., J. Appl. Phys. 40, 2191 (1969).CrossRefGoogle Scholar
24.Tsakalakos, T. and Hilliard, J. E., J. Appl. Phys. 55, 2885 (1984).CrossRefGoogle Scholar
25.Cahn, R. W. and Haasen, P., Physical Metallurgy (Elsevier Science B.V., North-Holland, Amsterdam, 1996), p. 535.Google Scholar
26.Koiwa, M., Hirano, K., Nakajima, H., and Okada, T., Diffusion in Materials (DIMAT-92, Trans Tech Publications Ltd., Brookfield, VT, 1993), p. 709.Google Scholar
27.Zhang, M., Yu, W., Wang, W.H., and Wang, W.K., Thin Solid Film 287, 293 (1996).CrossRefGoogle Scholar
28.Zhang, M. and Wang, W. K., Phys. Status Solidi (a) 159, 439 (1997).3.0.CO;2-C>CrossRefGoogle Scholar
29.Cahn, J. W., Acta. Metall. 9, 795 (1961).CrossRefGoogle Scholar
30.Cahn, J. W., Acta. Metall. 10, 179 (1962).CrossRefGoogle Scholar
31.Balluffi, R. W. and Blakely, I. M., Thin Solid Films 25, 363 (1975).Google Scholar
32. Charles Kittel, Introduction to Solid State Physics, 6th ed. (John Wiley & Sons, Inc., New York, 1986), p. 53.Google Scholar
33.Koiwa, M., Acta Metall. 22, 1259 (1974).Google Scholar
34.Nygren, E., Park, B., Goldman, L. M., and Spaepen, F., Appl. Phys. Lett. 56, 2094 (1990).Google Scholar
35.Coffa, S., Poate, J. M., Jacobson, D. C., Frank, W., and Gustin, W., Phys. Rev. B 45, 8355 (1992).CrossRefGoogle Scholar
36.Goldman, L. M., Atwater, H. A., and Spaepen, F., in Layered Structures: Heteroepitaxy, Superlattices, Strain, and Metastability, edited by Dodson, B. W., Schowalter, L. J., Cunningham, J. E., and Pollak, F. H. (Mater. Res. Soc. Symp. Proc. 160, Pittsburgh, PA, 1990), p. 577.Google Scholar