Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-23T20:13:56.401Z Has data issue: false hasContentIssue false

Insights into the deformation behavior of the CrMnFeCoNi high-entropy alloy revealed by elevated temperature nanoindentation

Published online by Cambridge University Press:  27 July 2017

Verena Maier-Kiener*
Affiliation:
Department Physical Metallurgy & Materials Testing, Montanuniversität Leoben, Leoben A-8700, Austria
Benjamin Schuh
Affiliation:
Department Materials Physics, Montanuniversität Leoben & Erich-Schmid Institute of Materials Science, Austrian Academy of Sciences, Leoben A-8700, Austria
Easo P. George
Affiliation:
Oak Ridge National Laboratory, Materials Science and Technology Division, Oak Ridge, Tennessee 37831-6115, USA; and Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996-2100, USA
Helmut Clemens
Affiliation:
Department Physical Metallurgy & Materials Testing, Montanuniversität Leoben, Leoben A-8700, Austria
Anton Hohenwarter
Affiliation:
Department Materials Physics, Montanuniversität Leoben & Erich-Schmid Institute of Materials Science, Austrian Academy of Sciences, Leoben A-8700, Austria
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

A CrMnFeCoNi high-entropy alloy was investigated by nanoindentation from room temperature to 400 °C in the nanocrystalline state and cast plus homogenized coarse-grained state. In the latter case a 〈100〉-orientated grain was selected by electron back scatter diffraction for nanoindentation. It was found that hardness decreases more strongly with increasing temperature than Young’s modulus, especially for the coarse-grained state. The modulus of the nanocrystalline state was slightly higher than that of the coarse-grained one. For the coarse-grained sample a strong thermally activated deformation behavior was found up to 100–150 °C, followed by a diminishing thermally activated contribution at higher testing temperatures. For the nanocrystalline state, different temperature dependent deformation mechanisms are proposed. At low temperatures, the governing processes appear to be similar to those in the coarse-grained sample, but with increasing temperature, dislocation-grain boundary interactions likely become more dominant. Finally, at 400 °C, decomposition of the nanocrystalline alloy causes a further reduction in thermal activation. This is rationalized by a reduction of the deformation controlling internal length scale by precipitate formation in conjunction with a diffusional contribution.

Type
Invited Papers
Copyright
Copyright © Materials Research Society 2017. This is a work of the U.S. Government and is not subject to copyright protection in the United States. 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Mathias Göken

References

REFERENCES

Yeh, J-W., Chen, S-K., Lin, S-J., Gan, J-Y., Chin, T-S., Shun, T-T., Tsau, C-H., and Chang, S-Y.: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299303 (2004).CrossRefGoogle Scholar
Cantor, B., Chang, I.T.H., Knight, P., and Vincent, A.J.B.: Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng., A 375–377, 213 (2004).Google Scholar
Senkov, O.N., Wilks, G.B., Miracle, D.B., Chuang, C.P., and Liaw, P.K.: Refractory high-entropy alloys. Intermetallics 18, 1758 (2010).CrossRefGoogle Scholar
Zhang, Y., Zuo, T.T., Tang, Z., Gao, M.C., Dahmen, K.A., Liaw, P.K., and Lu, Z.P.: Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 1 (2014).Google Scholar
Pickering, E.J. and Jones, N.G.: High-entropy alloys: A critical assessment of their founding principles and future prospects. Int. Mater. Rev. 6608, 1 (2016).Google Scholar
Miracle, D.B. and Senkov, O.N.: A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448 (2017).Google Scholar
Miracle, D., Majumdar, B., Wertz, K., and Gorsse, S.: New strategies and tests to accelerate discovery and development of multi-principal element structural alloys. Scr. Mater. 127, 195 (2017).Google Scholar
Pradeep, K.G., Tasan, C.C., Yao, M.J., Deng, Y., Springer, H., and Raabe, D.: Non-equiatomic high entropy alloys: Approach towards rapid alloy screening and property-oriented design. Mater. Sci. Eng., A 648, 183 (2015).CrossRefGoogle Scholar
Maier-Kiener, V., Schuh, B., George, E.P., Clemens, H., and Hohenwarter, A.: Nanoindentation testing as a powerful screening tool for assessing phase stability of nanocrystalline high-entropy alloys. Mater. Des. 115, 479 (2017).Google Scholar
Gali, A. and George, E.P.: Tensile properties of high- and medium-entropy alloys. Intermetallics 39, 74 (2013).CrossRefGoogle Scholar
Gludovatz, B., Hohenwarter, A., Catoor, D., Chang, E.H., George, E.P., and Ritchie, R.O.: A fracture-resistant high-entropy alloy for cryogenic applications. Science 345, 1153 (2014).Google Scholar
Laplanche, G., Gadaud, P., Horst, O., Otto, F., Eggeler, G., and George, E.P.: Temperature dependencies of the elastic moduli and thermal expansion coefficient of an equiatomic, single-phase CoCrFeMnNi high-entropy alloy. J. Alloys Compd. 623, 348 (2015).CrossRefGoogle Scholar
Haglund, A., Koehler, M., Catoor, D., George, E.P., and Keppens, V.: Polycrystalline elastic moduli of a high-entropy alloy at cryogenic temperatures. Intermetallics 58, 62 (2015).Google Scholar
Schuh, B., Mendez-Martin, F., Völker, B., George, E.P., Clemens, H., Pippan, R., and Hohenwarter, A.: Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation. Acta Mater. 96, 258 (2015).Google Scholar
Otto, F., Dlouhý, A., Pradeep, K.G., Kuběnová, M., Raabe, D., Eggeler, G., and George, E.P.: Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures. Acta Mater. 112, 40 (2016).Google Scholar
Pickering, E.J., Muñoz-Moreno, R., Stone, H.J., and Jones, N.G.: Precipitation in the equiatomic high-entropy alloy CrMnFeCoNi. Scr. Mater. 113, 106 (2016).Google Scholar
Komarasamy, M., Kumar, N., Mishra, R.S., and Liaw, P.K.: Anomalies in the deformation mechanism and kinetics of coarse-grained high entropy alloy. Mater. Sci. Eng., A 654, 256 (2016).CrossRefGoogle Scholar
Vaidya, M., Trubel, S., Murty, B.S., Wilde, G., and Divinski, S.V.: Ni tracer diffusion in CoCrFeNi and CoCrFeMnNi high entropy alloys. J. Alloys Compd. 688, 994 (2016).CrossRefGoogle Scholar
Owen, L.R., Pickering, E.J., Playford, H.Y., Stone, H.J., Tucker, M.G., and Jones, N.G.: An assessment of the lattice strain in the CrMnFeCoNi high-entropy alloy. Acta Mater. 122, 11 (2017).Google Scholar
Okamoto, N.L., Fujimoto, S., Kambara, Y., Kawamura, M., Chen, Z.M.T., Matsunoshita, H., Tanaka, K., Inui, H., and George, E.P.: Size effect, critical resolved shear stress, stacking fault energy, and solid solution strengthening in the CrMnFeCoNi high-entropy alloy. Sci. Rep. 6, 35863 (2016).Google Scholar
Otto, F., Dlouhý, A., Somsen, C., Bei, H., Eggeler, G., and George, E.P.: The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater. 61, 5743 (2013).Google Scholar
Tabachnikova, E.D., Podolskiy, A.V., Laktionova, M.O., Bereznaia, N.A., Tikhonovsky, M.A., and Tortika, A.S.: Mechanical properties of the CoCrFeNiMnV x high entropy alloys in temperature range 4.2–300 K. J. Alloys Compd. 698, 501 (2017).CrossRefGoogle Scholar
Wu, Z., Gao, Y., and Bei, H.: Thermal activation mechanisms and Labusch-type strengthening analysis for a family of high-entropy and equiatomic solid-solution alloys. Acta Mater. 120, 108 (2016).Google Scholar
Hong, S.I., Moon, J., Hong, S.K., and Kim, H.S.: Thermally activated deformation and the rate controlling mechanism in CoCrFeMnNi high entropy alloy. Mater. Sci. Eng., A 682, 569 (2017).Google Scholar
Toda-Caraballo, I. and Rivera-Díaz-Del-Castillo, P.E.J.: Modelling solid solution hardening in high entropy alloys. Acta Mater. 85 (2015).CrossRefGoogle Scholar
Varvenne, C., Luque, A., and Curtin, W.A.: Theory of strengthening in fcc high entropy alloys. Acta Mater. 118 (2016).Google Scholar
Wu, Z., Bei, H., Pharr, G.M., and George, E.P.: Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures. Acta Mater. 81, 428 (2014).Google Scholar
Lee, D-H., Choi, I-C., Seok, M-Y., He, J., Lu, Z., Suh, J-Y., Kawasaki, M., Langdon, T.G., and Jang, J-I.: Nanomechanical behavior and structural stability of a nanocrystalline CoCrFeNiMn high-entropy alloy processed by high-pressure torsion. J. Mater. Res. 30, 2804 (2015).Google Scholar
Wu, D., Jang, J.S.C., and Nieh, T.G.: Elastic and plastic deformations in a high entropy alloy investigated using a nanoindentation method. Intermetallics 68, 118 (2016).Google Scholar
Lee, D-H., Seok, M-Y., Zhao, Y., Choi, I-C., He, J., Lu, Z., Suh, J-Y., Ramamurty, U., Kawasaki, M., Langdon, T.G., and Jang, J-I.: Spherical nanoindentation creep behavior of nanocrystalline and coarse-grained CoCrFeMnNi high-entropy alloys. Acta Mater. 109, 314 (2016).Google Scholar
Raghavan, R., Kirchlechner, C., Jaya, B.N., Feuerbacher, M., and Dehm, G.: Mechanical size effects in a single crystalline equiatomic FeCrCoMnNi high entropy alloy. Scr. Mater. 129, 52 (2017).Google Scholar
Zhang, H., Siu, K.W., Liao, W., Wang, Q., Yang, Y., and Lu, Y.: In situ mechanical characterization of CoCrCuFeNi high-entropy alloy micro/nano-pillars for their size-dependent mechanical behavior. Mater. Res. Express 3, 94002 (2016).Google Scholar
Zou, Y., Maiti, S., Steurer, W., and Spolenak, R.: Size-dependent plasticity in an Nb25Mo25Ta25W25 refractory high-entropy alloy. Acta Mater. 65, 85 (2014).Google Scholar
Ye, Y.X., Lu, Z.P., and Nieh, T.G.: Dislocation nucleation during nanoindentation in a body-centered cubic TiZrHfNb high-entropy alloy. Scr. Mater. 130, 64 (2017).Google Scholar
He, Q.F., Zeng, J.F., Wang, S., Ye, Y.F., Zhu, C., Nieh, T.G., Lu, Z.P., and Yang, Y.: Delayed plasticity during nanoindentation of single-phase CoCrFeMnNi high-entropy alloy. Mater. Res. Lett. 3831, 1 (2016).Google Scholar
Zhu, C., Lu, Z.P., and Nieh, T.G.: Incipient plasticity and dislocation nucleation of FeCoCrNiMn high-entropy alloy. Acta Mater. 61, 2993 (2013).Google Scholar
Wheeler, J.M. and Michler, J.: Invited article: Indenter materials for high temperature nanoindentation. Rev. Sci. Instrum. 84, 101301 (2013).Google Scholar
Oliver, W.C. and Pharr, G.M.: Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
Wheeler, J.M., Armstrong, D.E.J., Heinz, W., and Schwaiger, R.: High temperature nanoindentation: The state of the art and future challenges. Curr. Opin. Solid State Mater. Sci. 19, 354 (2015).Google Scholar
Maier, V., Durst, K., Mueller, J., Backes, B., Höppel, H.W., and Göken, M.: Nanoindentation strain-rate jump tests for determining the local strain-rate sensitivity in nanocrystalline Ni and ultrafine-grained Al. J. Mater. Res. 26, 1421 (2011).CrossRefGoogle Scholar
Wei, Q., Cheng, S., Ramesh, K.T., and Ma, E.: Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: Fcc versus bcc metals. Mater. Sci. Eng., A 381, 71 (2004).Google Scholar
Durst, K. and Maier, V.: Dynamic nanoindentation testing for studying thermally activated processes from single to nanocrystalline metals. Curr. Opin. Solid State Mater. Sci. 19, 340 (2015).Google Scholar
Maier, V., Schunk, C., Göken, M., and Durst, K.: Microstructure-dependent deformation behaviour of bcc-metals—Indentation size effect and strain rate sensitivity. Philos. Mag. 95, 1766 (2014).Google Scholar
Vlassak, J.J. and Nix, W.D.: Measuring the elastic properties of anisotropic materials by means of indentation experiments. J. Mech. Phys. Solids 42, 1223 (1994).Google Scholar
Huang, X., Hansen, N., and Tsuji, N.: Hardening by annealing and softening by deformation in nanostructured metals. Science 312, 249 (2006).Google Scholar
Yu, T., Hansen, N., Huang, X., and Godfrey, A.: Observation of a new mechanism balancing hardening and softening in metals. Mater. Res. Letters, 2, 160 (2014).Google Scholar
Renk, O., Hohenwarter, A., Eder, K., Kormout, K.S., Cairney, J.M., and Pippan, R.: Increasing the strength of nanocrystalline steels by annealing: Is segregation necessary? Scr. Mater. 95, 27 (2015).Google Scholar
Nix, W.D. and Gao, H.: Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids 46, 411 (1998).Google Scholar
Van Petegem, S., Zimmermann, J., and Van Swygenhoven, H.: Yield point phenomenon during strain rate change in nanocrystalline Ni–Fe. Scr. Mater. 65, 217 (2011).Google Scholar
Meyers, M.A., Mishra, A., and Benson, D.J.: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51, 427 (2006).Google Scholar
Seeger, A.: Temperature and strain-rate dependence of the flow stress of body-centered cubic metals: A theory based on kink–kink interactions. Z. Met. Res. Adv. Tech. 72, 369 (1981).Google Scholar
Conrad, H.: Plastic deformation kinetics in nanocrystalline fcc metals based on the pile-up of dislocations. Nanotechnology 18, 1 (2007).CrossRefGoogle Scholar
Li, Y.J., Mueller, J., Höppel, H.W., Göken, M., and Blum, W.: Deformation kinetics of nanocrystalline nickel. Acta Mater. 55, 5708 (2007).Google Scholar
Mohanty, G., Wheeler, J.M., Raghavan, R., Wehrs, J., Hasegawa, M., Mischler, S., Philippe, L., and Michler, J.: Elevated temperature, strain rate jump microcompression of nanocrystalline nickel. Philos. Mag. 95, 1878 (2015).Google Scholar
Höppel, H.W., May, J., Eisenlohr, P., and Göken, M.: Strain-rate sensitivity of ultrafine-grained materials. Z. Metallkd. 96(6), 566 (2005).Google Scholar
Wei, Q.: Strain rate effects in the ultrafine grain and nanocrystalline regimes-influence on some constitutive responses. J. Mater. Sci. 42, 1709 (2007).Google Scholar
Kreuzeder, M., Abad, M-D., Primorac, M-M., Hosemann, P., Maier, V., and Kiener, D.: Fabrication and thermo-mechanical behavior of ultra-fine porous copper. J. Mater. Sci. 50, 634 (2015).Google Scholar
Wu, D., Wang, X.L., and Nieh, T.G.: Variation of strain rate sensitivity with grain size in Cr and other body-centred cubic metals. J. Phys. D: Appl. Phys. 47, 175303 (2014).Google Scholar
Leitner, A., Maier-Kiener, V., Jeong, J., Abad, M.D., Hosemann, P., Oh, S.H., and Kiener, D.: Interface dominated mechanical properties of ultra-fine grained and nanoporous Au at elevated temperatures. Acta Mater. 121, 104 (2016).Google Scholar