Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-13T22:33:18.378Z Has data issue: false hasContentIssue false

Insight into reactions and interface between boron nitride nanotube and aluminum

Published online by Cambridge University Press:  25 September 2012

Debrupa Lahiri
Affiliation:
Department of Mechanical and Materials Engineering, Plasma Forming Lab, Florida International University, Miami, Florida 33174
Virendra Singh
Affiliation:
AMPAC and Nanoscience Technology Center, University of Central Florida, Orlando, Florida 32816
Lu Hua Li
Affiliation:
ARC Centre of Excellence for Functional Nanomaterials, Institute for Technology Research and Innovation, Deakin University, Waurn Ponds, Victoria 3216, Australia
Tan Xing
Affiliation:
ARC Centre of Excellence for Functional Nanomaterials, Institute for Technology Research and Innovation, Deakin University, Waurn Ponds, Victoria 3216, Australia
Sudipta Seal
Affiliation:
AMPAC and Nanoscience Technology Center, University of Central Florida, Orlando, Florida 32816
Ying Chen
Affiliation:
ARC Centre of Excellence for Functional Nanomaterials, Institute for Technology Research and Innovation, Deakin University, Waurn Ponds, VIC 3216, Australia
Arvind Agarwal*
Affiliation:
Department of Mechanical and Materials Engineering, Plasma Forming Lab, Florida International University, Miami, Florida 33174
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Nature and mechanism of interfacial reactions between boron nitride nanotubes (BNNTs) and aluminum matrix at high temperature (650 °C) are studied using high-resolution transmission electron microscopy (HRTEM). This study analyzes the feasibility of the use of BNNTs as reinforcement in aluminum matrix composites for structural application, for which interface plays a critical role. Thermodynamic comparison of aluminum (Al)-BNNT with analogous Al-carbon nanotube (Al-CNT) system reveals lesser amount of reaction in the former. Experimental observation also reveals thin (∼7 nm) reaction-product formation at Al-BNNT interface even after 120 min of exposure at 650 °C. The spatial distribution of the reaction-product species at the interface is governed by the competitive diffusion of N, Al, and B. Morphology of the reaction products are influenced by their orientation relationship with BNNT walls. A theoretical prediction on Al-BNNT interface in macroscale composite suggests the formation of strong bond between the matrix and reinforcement phase.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Suryavanshi, A.P., Yu, M.F., Wen, J., Tang, C., and Bando, Y.: Elastic modulus and resonance behavior of boron nitride nanotubes. Appl. Phys. Lett. 84, 2527 (2004).CrossRefGoogle Scholar
Chopra, N.G. and Zetll, A.: Measurement of the elastic modulus of a multiwalled boron nitride nanotubes. Solid State Commun. 105, 297 (1998).CrossRefGoogle Scholar
Arenal, R., Wang, M-S., Xu, Z., Loiseau, A., and Golberg, D.: Young modulus, mechanical and electrical properties of isolated individual and bundled single-walled boron nitride nanotubes. Nanotechnology 22, 265704 (2011).CrossRefGoogle ScholarPubMed
Zhi, C., Bando, Y., Tang, C., Honda, S., Sato, K., Kuwahara, H., and Golberg, D.: Characteristics of boron nitride nanotube–polyaniline composites. Angew. Chem. 44, 7929 (2005).CrossRefGoogle ScholarPubMed
Zhi, C., Bando, Y., and Tang, C.: Boron nitride nanotube/polystyrene composites. J. Mater. Res. 21, 2794 (2006).CrossRefGoogle Scholar
Zhi, C., Bando, Y., Terao, T., Tang, C., Kuwahara, H., and Golberg, D.: Towards thermoconductive, electrically insulating polymeric composites with boron nitride nanotubes as fillers. Adv. Funct. Mater. 19, 1857 (2009).CrossRefGoogle Scholar
Terao, T., Zhi, C., Bando, Y., Mitome, M., Tang, C., and Golberg, D.: Alignment of boron nitride nanotubes in polymeric composite films for thermal conductivity improvement. J. Phys. Chem. 114, 4340 (2010).Google Scholar
Ravichandran, J., Manoj, A.G., Liu, J., Manna, I., and Carroll, D.L.: A novel polymer nanotube composite for photovoltaic packaging applications. Nanotechnology 19, 085712 (2008).CrossRefGoogle ScholarPubMed
Lahiri, D., Rouzaud, F., Richard, T., Keshri, A.K., Bakshi, S.R., Kos, L., and Agarwal, A.: Boron nitride nanotube-reinforced polylactide–polycaprolactone copolymer composite: Mechanical properties and cytocompatibility with osteoblasts and macrophages in vitro. Acta Biomater. 6, 3524 (2010).CrossRefGoogle ScholarPubMed
Huang, Q., Bando, Y., Xu, X., Nishimura, T., Zhang, C., Tang, C., Xu, F., Gao, L., and Golberg, D.: Enhancing superplasticity of engineering ceramics by introducing BN nanotubes. Nanotechnology 18, 485706 (2007).CrossRefGoogle Scholar
Lahiri, D., Singh, V., Benaduce, A.P., Seal, S., Kos, L., and Agarwal, A.: Boron nitride nanotube-reinforced hydroxyapatite composite: Mechanical and tribological performance and in vitro biocompatibility to osteoblasts. J. Mech. Behav. Biomed. Mater. 4, 44 (2011).CrossRefGoogle ScholarPubMed
Du, M., Bi, J-Q., Eang, W-L., Sun, X-L., and Long, N-N.: Microstructure and properties of SiO2 matrix reinforced by BN nanotubes and nanoparticles. J. Alloys Compd. 509, 9996 (2011).CrossRefGoogle Scholar
Wang, W-L., Bi, J-Q., Sun, K-N., Du, M., Long, N-N., and Bai, Y-J.: Fabrication of alumina ceramic reinforced with boron nitride nanotubes with improved mechanical properties. J. Am. Ceram. Soc. 94, 3636 (2011).CrossRefGoogle Scholar
Wang, W-L., Bi, J-Q., Sun, K-N., Du, M., Long, N-N., and Bai, Y-J.: Thermal shock resistance behavior of alumina ceramics incorporated with boron nitride nanotubes. J. Am. Ceram. Soc. 94, 2304 (2011).CrossRefGoogle Scholar
Wang, W-L., Bi, J-Q., Wang, S-R., Sun, K-N., Du, M., Long, N-N., and Bai, Y-J.: Microstructure and mechanical properties of alumina ceramics reinforced by boron nitride nanotubes. J. Eur. Ceram. Soc. 31, 2277 (2011).CrossRefGoogle Scholar
Du, M., Bi, J-Q., Wang, W-L., Sun, X-L., Long, N-N., and Bai, Y-J.: Fabrication and mechanical properties of SiO2–Al2O3–BNNPs and SiO2–Al2O3–BNNTs composites. Mater. Sci. Eng., A 530, 669 (2011).CrossRefGoogle Scholar
Agarwal, A., Bakshi, S.R., and Lahiri, D.: Carbon Nanotubes: Reinforced Metal Matrix Composites (CRC Press, Boca Raton, FL, 2010), ISBN: 9781439811498.Google Scholar
Kwon, H., Estili, M., Takagi, K., Miyazaki, T., and Kawasaki, A.: Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites. Carbon 47, 570 (2009).CrossRefGoogle Scholar
Laha, T., Agarwal, A., McKechnie, T., and Seal, S.: Synthesis and characterization of plasma spray-formed carbon nanotube-reinforced aluminum composite. Mater. Sci. Eng., A 381, 249 (2004).CrossRefGoogle Scholar
Bakshi, S.R., Lahiri, D., and Agarwal, A.: Carbon nanotube reinforced metal matrix composites—A review. Int. Mater. Rev. 55, 41 (2010).CrossRefGoogle Scholar
Laha, T., Kuchibatla, S., Seal, S., Li, W., and Agarwal, A.: Interfacial phenomena in thermally sprayed multiwalled carbon nanotube reinforced aluminum nanocomposite. Acta Mater. 55, 1059 (2007).CrossRefGoogle Scholar
Deng, C.F., Wang, D.Z., Zhang, X.X., and Li, A.B.: Processing and properties of carbon nanotubes-reinforced aluminum composites. Mater. Sci. Eng., A 444, 138 (2007).CrossRefGoogle Scholar
He, C., Zhao, N., Shi, C., Du, X., Li, J., Li, H., and Cui, Q.: An approach to obtaining homogeneously dispersed carbon nanotubes in Al powders for preparing reinforced Al-matrix composites. Adv. Mater. 19, 1128 (2007).CrossRefGoogle Scholar
Choi, H., Shin, J., Min, B., Park, J., and Bae, D.: Reinforcing effects of carbon nanotubes in structural aluminum matrix nanocomposites. J. Mater. Res. 24, 2610 (2009).CrossRefGoogle Scholar
Pérez-Bustamante, R., Gómez-Esparza, C.D., Estrada-Guel, I., Miki-Yoshida, M., Licea-Jiménez, L., Pérez-García, S.A., and Martínez-Sánchez, R.: Microstructural and mechanical characterization of Al–MWCNT composites produced by mechanical milling. Mater. Sci. Eng., A 502, 159 (2009).CrossRefGoogle Scholar
Bakshi, S.R. and Agarwal, A.: An analysis on the factors affecting strengthening in carbon nanotube-reinforced aluminum composites. Carbon 49, 533 (2011).CrossRefGoogle Scholar
Golberg, D., Bando, Y., Tang, C., and Zhi, C.: Boron nitride nanotubes. Adv. Mater. 19, 2413 (2007).CrossRefGoogle Scholar
Ghassemi, H.M., Lee, C.H., Yap, Y.K., and Yassar, R.S.: In situ observation of reversible rippling in multiwalled boron nitride nanotubes. Nanotechnology 22, 115702 (2011).CrossRefGoogle Scholar
Bakshi, S.R., Keshri, A.K., Singh, V., Seal, S., and Agarwal, A.: Interface in carbon nanotube-reinforced aluminum silicon composites: Thermodynamic analysis and experimental verification. J. Alloys Compd. 48, 207 (2009).CrossRefGoogle Scholar
Ci, L., Ryu, Z., Jin-Phillipp, N.Y., and Ruhle, M.: Investigation of the interfacial reaction between multiwalled carbon nanotubes and aluminum. Acta Mater. 54, 5367 (2006).CrossRefGoogle Scholar
Golberg, D., Bando, Y., Kurashima, K., and Sato, T.: Synthesis and characterization of ropes made of BN multiwalled nanotubes. Scr. Mater. 44, 1561 (2001).CrossRefGoogle Scholar
Das, M., Ghosh, J., and Basu, A.K.: Effect of activation on boron nitride coating on carbon fiber. Ceram. Int. 36, 2511 (2010).CrossRefGoogle Scholar
Das, M., Basu, A.K., Ghatak, S., and Joshi, A.G.: Carbothermal synthesis of boron nitride coating on PAN carbon fiber. J. Eur. Ceram. Soc. 29, 2129 (2009).CrossRefGoogle Scholar
Pippel, E., Woltersdorf, J., Dietrich, D., Stockel, S., Weise, K., and Marx, G.J.: CVD-coated boron nitride on continuous silicon carbide fibers: Structure and nanocomposition. J. Eur. Ceram. Soc. 20, 1837 (2000).CrossRefGoogle Scholar
Li, L.H., Chen, Y., and Glishenkov, A.M.: Synthesis of boron nitride nanotubes by boron ink annealing. Nanotechnology 21, 105601 (2010).CrossRefGoogle ScholarPubMed
Su, C-Y., Juang, Z-Y., Chen, K-F., Cheng, B-M., Chen, F-R., Leou, K-C., and Tsai, C-H.: Selective growth of boron nitride nanotubes by the plasma-assisted and iron-catalytic CVD methods. J. Phys. Chem. 113, 14681 (2009).Google Scholar
Yu, J., Li, B.C.P., Zou, J., and Chen, Y.: Influence of nitriding gases on the growth of boron nitride nanotubes. J. Mater. Sci. 42, 4025 (2007).CrossRefGoogle Scholar
Bale, C.W., Chartrand, P., Degterov, S.A., Eriksson, G., Hack, K., Ben Mahfoud, R., Melançon, J., Pelton, A.D., and Petersen, S.: FactSage thermochemical software and databases. CALPHAD 26, 189 (2002).CrossRefGoogle Scholar
Taniyasu, Y. and Kasu, M.: Improved emission efficiency of 210-nm deep ultraviolet aluminum nitride. NTT Tech. Rev. 8, 1 (2010).Google Scholar
Lv, H., Chen, G., Ye, H., and Yan, G.: Synthesis of monocrystal aluminum nitride nanowires at low temperature. J. Appl. Phys. 101, 053526 (2007).CrossRefGoogle Scholar
Yang, J., Liu, T-W., Hsu, C-W., Chen, L-C., Chen, K-H., and Chen, C-C.: Controlled growth of aluminum nitride nanorod arrays via chemical vapor deposition. Nanotechnology 17, S321 (2006).CrossRefGoogle Scholar
Martin, F., Muralt, P., Dubois, M-A., and Pezous, A.: Thickness dependence of the properties of highly c-axis textured AlN thin films. J. Vac. Sci. Technol., A 22, 361 (2004).CrossRefGoogle Scholar
Larbalesiter, D., Gurevich, A., Feldmann, D.M., and Polyanskii, A.: High-Tc superconducting materials for electric power applications. Nature 414, 368 (2001).CrossRefGoogle Scholar
Deppisch, C., Liu, G., Hall, A., Xu, Y., Zangvil, A., Shang, J.K., and Economy, J.: The crystallization and growth of AlB2 single crystal flakes in aluminum. J. Mater. Res. 13, 3485 (1998).CrossRefGoogle Scholar
Du, C., Li, S., Zhang, K., and Lu, K.: BN/Al composite formation by high energy ball milling. Scr. Mater. 36, 7 (1997).CrossRefGoogle Scholar
Xue, X.M., Wang, J.T., and Quan, M.X.: Wetting characteristics and interfacial reaction of liquid aluminum on hot-pressed boronde substrate. Mater. Sci. Eng., A 132, 277 (1991).CrossRefGoogle Scholar
Tang, D-M., Ren, C-L., Wei, X., Wang, M-S., Liu, C., Bando, Y., and Golberg, D.: Mechanical properties of bamboo-like boron nitride nanotubes by in-situ TEM and MD simulations: Strengthening effect of interlocked joint interfaces. ACS Nano 5, 7362 (2011).CrossRefGoogle ScholarPubMed
Bakshi, S.R., Keshri, A.K., and Agarwal, A.: A comparison of mechanical and wear properties of plasma sprayed carbon nanotube reinforced aluminum composites at nano- and macroscale. Mater. Sci. Eng., A 528, 3375 (2011).CrossRefGoogle Scholar
Kim, I-Y., Lee, J-H., Lee, G-S., Baik, S-H., Kim, Y-J., and Lee, Y-Z.: Friction and wear characteristics of the carbon nanotube–aluminum composites with different manufacturing conditions. Wear 267, 593 (2009).CrossRefGoogle Scholar
Etter, T., Schulz, P., Weber, M., Metz, J., Wimmler, M., Loffler, J.F., and Uggowitzer, P.J.: TEM observation of liquid-phase bonded aluminum–silicon/aluminum nitride hetero interface. Mater. Sci. Eng., A 448, 1 (2007).CrossRefGoogle Scholar
Naranjo, M., Rodriguez, J.A., and Herrera, E.J.: Sintering of Al/AlN composite powder obtained by gas–solid reaction milling. Scr. Mater. 49, 65 (2003).CrossRefGoogle Scholar
Lii, D-F., Huang, J-L., and Chang, S-T.: The mechanical properties of AlN/Al composites manufactured by squeeze casting. J. Eur. Ceram. Soc. 22, 253 (2002).CrossRefGoogle Scholar
Lee, B-S. and Kang, S.: Low-temperature processing of B4C–Al composites via infiltration technique. Mater. Chem. Phys. 67, 249 (2001).CrossRefGoogle Scholar
Arslan, G., Kara, F., and Turan, S.: Quantitative x-ray diffraction analysis of reactive infiltrated boron carbide–aluminum composites. J. Eur. Ceram. Soc. 23, 1243 (2003).CrossRefGoogle Scholar
Montesa, C.M., Shibata, N., Tohei, T., and Ikuhara, Y.: TEM observation of liquid-phase bonded aluminum–silicon/aluminum nitride hetero interface. J. Mater. Sci. 46, 4392 (2011).CrossRefGoogle Scholar
Xiao, X.L., McCulloch, D.G., Mckenzie, D.R., and Bilek, M.M.M.: The microstructure and stability of Al/AlN multilayered films. J. Appl. Phys. 100, 013504 (2006).CrossRefGoogle Scholar
Han, Y.F., Dai, Y.B., Wang, J., Shu, D., and Sun, B.D.: First-principles calculations on Al/AlB2 interfaces. Appl. Surf. Sci. 257, 7831 (2011).CrossRefGoogle Scholar
Zhang, H-H.: Crystallography and refining mechanism of (Ti, B)-contained salts in pure aluminum. Trans. Nonferrous Met. Soc. China 18, 836 (2008).CrossRefGoogle Scholar