Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-26T02:43:59.819Z Has data issue: false hasContentIssue false

The influence of water vapor on thermal transformation of boehmite

Published online by Cambridge University Press:  31 January 2011

Zdenek Hrabe*
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
Sridhar Komarneni*
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
Ladislav Pach*
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
Rustum Roy
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
*
a)Current address: Department of Silicate Chemistry, Slovak Technical University, CS-812 37 Bratislava, Czechoslovakia.
b)Also with the Department of Agronomy.
a)Current address: Department of Silicate Chemistry, Slovak Technical University, CS-812 37 Bratislava, Czechoslovakia.
Get access

Abstract

Boehmite compacts and boehmite gels (seeded and unseeded) were annealed at various temperatures in nitrogen and 1 atm water vapor to determine the influence of water vapor on boehmite transformation to new phases, changes in porosity, and morphology. Water vapor was found to accelerate the phase transformations markedly compared to dry N2 treatment. The catalyzing effect of water vapor may be due to its interactions on grain surfaces and generation of fast diffusion paths, resulting in nucleation and growth of new phases. This result shows that control of the furnace atmosphere is a useful variable in thermally activated processes.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Yarbrough, W. A. and Roy, R., J. Mater. Res. 2, 494 (1987).CrossRefGoogle Scholar
2.Stumpf, H. C., Russel, A. S., and Newsome, J. W., Ind. Eng. Chem. 42, 1398 (1950).CrossRefGoogle Scholar
3.Kumagai, M. and Messing, G. L., J. Am. Ceram. Soc. 67, C230 (1984).CrossRefGoogle Scholar
4.Komarneni, S., Suwa, Y., and Roy, R., J. Am. Ceram. Soc. 69, C55 (1986).Google Scholar
5.Shelleman, R. A., Messing, G. L., and Kumagai, M., J. Non-Cryst. Solids 82, 277 (1986).CrossRefGoogle Scholar
6.Messing, G. L., Kumagai, M., Shelleman, R. A., and McArdle, J. L., in Science of Ceramic Chemical Processing, edited by Hench, L. L. and Ulrich, D. R. (John Wiley, New York, 1986), p. 259.Google Scholar
7.Hrabe, Z. and Jesenák, V., Cem. Concr. Res. 10, 195 (1978).CrossRefGoogle Scholar
8.Hrabe, Z. and Svetík, S., Thermochim. Acta 92, 653 (1985).CrossRefGoogle Scholar
9.Pach, L., Silikáty 17, 283 (1973).Google Scholar
10.Callister, W. D., Cutler, I. B., and Gordon, R. S., J. Am. Ceram. Soc. 49, 419 (1966).CrossRefGoogle Scholar
11.Chaklader, A. C. and McKenzie, L. G., J. Am. Ceram. Soc. 49, 477 (1966).CrossRefGoogle Scholar
12.Ervin, G. and Osborn, E. F., J. Geol. 59, 381 (1951).CrossRefGoogle Scholar
13.Pach, L., Roy, R., and Komarneni, S., J. Mater. Res. 5, 278 (1990).CrossRefGoogle Scholar
14.Wilson, S. J. and Stacey, N. H., J. Colloid Interface Sci. 82, 507 (1981).CrossRefGoogle Scholar
15.Dynys, F. W. and Halloran, J. W., J. Am. Ceram. Soc. 65, 442 (1982).CrossRefGoogle Scholar
16.Suwa, Y., Komarneni, S., and Roy, R., J. Mater. Sci. Lett. 5, 21 (1986).CrossRefGoogle Scholar
17.Boulos, E. N. and Kreidl, N. J., J. Can. Ceram. Soc. 41, 83 (1972).Google Scholar
18.Schaffer, H. A., in Nitrogen Ceramics, edited by Riley, F. L. (Nijhoff Publ., Boston, MA, 1983), p. 303.CrossRefGoogle Scholar