Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-16T11:18:56.890Z Has data issue: false hasContentIssue false

Influence of rhenium on γ′-strengthened cobalt-base superalloys

Published online by Cambridge University Press:  12 July 2017

Markus Kolb*
Affiliation:
Friedrich-Alexander-Universität Erlangen-Nürnberg, Materials Science & Engineering, Institute I, Erlangen 91058, Germany
Christopher H. Zenk
Affiliation:
Friedrich-Alexander-Universität Erlangen-Nürnberg, Materials Science & Engineering, Institute I, Erlangen 91058, Germany
Anna Kirzinger
Affiliation:
Friedrich-Alexander-Universität Erlangen-Nürnberg, Materials Science & Engineering, Institute I, Erlangen 91058, Germany
Ivan Povstugar
Affiliation:
Max-Planck-Institut für Eisenforschung, Department of Microstructure Physics and Alloy Design, Düsseldorf 40237, Germany
Dierk Raabe
Affiliation:
Max-Planck-Institut für Eisenforschung, Department of Microstructure Physics and Alloy Design, Düsseldorf 40237, Germany
Steffen Neumeier
Affiliation:
Friedrich-Alexander-Universität Erlangen-Nürnberg, Materials Science & Engineering, Institute I, Erlangen 91058, Germany
Mathias Göken
Affiliation:
Friedrich-Alexander-Universität Erlangen-Nürnberg, Materials Science & Engineering, Institute I, Erlangen 91058, Germany
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The element Re is known to be a very potent strengthener concerning the creep properties of Ni-base superalloys. In this paper the influence of Re on the properties of new γ′-strengthened Co-base superalloys is addressed. Atom probe tomography reveals that Re partitions preferentially to the γ phase, but not as pronounced as in ni-base superalloys. Nanoindentation and micro-pillar compression tests of the γ′ phase indicate an increase of the hardness and the critical resolved shear stress caused by a considerable concentration of Re in the γ′ phase. Creep investigations show that the positive effect of Re is by far not as pronounced as in Ni-base superalloys. Several effects, which can contribute to this behavior, such as the lower Re concentration in γ and hence a slightly reduced effective diffusion coefficient, a smaller diffusion barrier of Re in Co compared to Ni, a slightly lower lattice misfit and γ′ volume fraction of the Re-containing alloy, are discussed.

Type
Invited Papers
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

b)

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.

Contributing Editor: Jürgen Eckert

References

REFERENCES

Sato, J., Omori, T., Oikawa, K., Ohnuma, I., Kainuma, R., and Ishida, K.: Cobalt-base high-temperature alloys. Science 312, 90 (2006).Google Scholar
Neumeier, S., Freund, L.P., and Göken, M.: Novel wrought γ/γ′ cobalt base superalloys with high strength and improved oxidation resistance. Scr. Mater. 109, 104 (2015).Google Scholar
Suzuki, A. and Pollock, T.M.: High-temperature strength and deformation of γ/γ′ two-phase Co–Al–W-base alloys. Acta Mater. 56, 1288 (2008).Google Scholar
Bauer, A., Neumeier, S., Pyczak, F., and Göken, M.: Microstructure and creep strength of different γ/γ′-strengthened Co-base superalloy variants. Scr. Mater. 63, 1197 (2010).CrossRefGoogle Scholar
Xue, F., Zhou, H.J., and Feng, Q.: Improved high-temperature stability and creep property of novel Co-base singe-crystal alloys containing Ta and Ti. J. Miner. Met. Mater. Soc. TMS 66, 2486 (2014).CrossRefGoogle Scholar
Titus, M.S., Suzuki, A., and Pollock, T.M.: Creep and directional coarsening in single crystals of new γ–γ′ cobalt-base alloys. Scr. Mater. 66, 574 (2012).Google Scholar
Blavette, D., Caron, P., and Khan, T.: An atom probe investigation of the role of rhenium additions in improving creep resistance of Ni-base superalloys. Scr. Metall. 20, 1395 (1986).Google Scholar
Pyczak, F., Neumeier, S., and Göken, M.: Influence of lattice misfit on the internal stress and strain states before and after creep investigated in nickel-base superalloys containing rhenium and ruthenium. Mater. Sci. Eng., A 510–511, 295 (2009).Google Scholar
Durst, K. and Göken, M.: Micromechanical characterisation of the influence of rhenium on the mechanical properties in nickel-base superalloys. Mater. Sci. Eng., A 387–389, 312 (2004).Google Scholar
Yeh, A.C. and Tin, S.: Effects of Ru and Re additions on the high temperature flow stresses of Ni-base single crystal superalloys. Scr. Mater. 52, 519 (2005).CrossRefGoogle Scholar
Pyczak, F., Devrient, B., and Mughrabi, H.: The effect of different alloying elements on the thermal expansion coefficients, lattice constants and misfit of nickel-based superalloys investigated by X-ray diffraction. In Proceedings Superalloys 2004, Green, K.A., Pollock, T.M., Harada, H., Howson, T.E., Reed, R.C., Schirra, J.J., and Walston, S.E., eds. (The Minerals, Metals and Materials Society, Warrendale, PA, 2004); pp. 827836.Google Scholar
Carroll, L.J., Feng, Q., Mansfield, J.F., and Pollock, T.M.: Elemental partitioning in Ru-containing nickel-base single crystal superalloys. Mater. Sci. Eng., A 457, 292 (2007).Google Scholar
Murakami, H., Honma, T., Koizumi, Y., and Harada, H.: Distribution of platinum group metals in Ni-base single-crystal superalloys. In Proceedings Superalloys 2000, Pollock, T.M., Kissinger, R.D., Bowman, R.R., Green, K.A., McLean, M., Olsen, S., and Schirra, J.J., eds. (The Minerals, Metals and Materials Society, Warrendale, PA, 2000); pp. 747756 Google Scholar
Reed, R.C., Yeh, A.C., Tin, S., Babu, S.S., and Miller, M.K.: Identification of the partitioning characteristics of ruthenium in single crystal superalloys using atom probe tomography. Scr. Mater. 51, 327 (2004).Google Scholar
Franke, O., Durst, K., and Göken, M.: Nanoindentation investigations to study solid solution hardening in Ni-based diffusion couples. J. Mater. Res. 24, 1127 (2009).Google Scholar
Fu, C.L., Reed, R., Janotti, A., and Krcmar, M.: On the diffusion of alloying elements in the nickel-base superalloys. In Proceedings Superalloys 2004, Green, K.A., Pollock, T.M., Harada, H., Howson, T.E., Reed, R.C., Schirra, J.J., and Walston, S.E., eds. (The Minerals, Metals and Materials Society, Warrendale, PA, 2004); pp. 867875 Google Scholar
Karunaratne, M.S.A., Carter, P., and Reed, R.C.: Interdiffusion in the face-centred cubic phase of the Ni–Re, Ni–Ta and Ni–W systems between 900 and 1300 °C. Mater. Sci. Eng., A 281, 229 (2000).Google Scholar
Mottura, A. and Reed, R.C.: What is the role of rhenium in single crystal superalloys? In Eurosuperalloys 2014, Guédou, J.Y. and Choné, J., eds., MATEC Web of Conferences, 14, 01001 (2014).Google Scholar
Neumeier, S., Rehman, H.U., Neuner, J., Zenk, C.H., Michel, S., Schuwalow, S., Rogal, J., Drautz, R., and Göken, M.: Diffusion of solutes in fcc cobalt investigated by diffusion couples and first principles kinetic Monte Carlo. Acta Mater. 106, 304 (2016).Google Scholar
Heckl, A., Rettig, R., and Singer, R.F.: Solidification characteristics and segregation behavior of nickel-base superalloys in dependence on different rhenium and ruthenium contents. Metall. Mater. Trans. A 41, 202 (2009).Google Scholar
Oliver, W.C. and Pharr, G.M.: Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).Google Scholar
Hellman, O.C., Vandenbroucke, J.A., Rüsing, J., Isheim, D., and Seidman, D.N.: Analysis of three-dimensional atom-probe data by the proximity histogram. Microsc. Microanal. 6, 437 (2000).Google Scholar
Thompson, K., Lawrence, D., Larson, D.J., Olson, J.D., Kelly, T.F., and Gorman, B.: In situ site-specific specimen preparation for atom probe tomography. Ultramicroscopy 107, 131 (2007).Google Scholar
Neumeier, S., Pyczak, F., and Göken, M.: Influence of rhenium and ruthenium on the local mechanical properties of the γ and γ′ phases in nickel-base superalloys. Philos. Mag. 91, 4187 (2011).Google Scholar
Pyczak, F., Neumeier, S., and Göken, M.: Temperature dependence of element partitioning in rhenium and ruthenium bearing nickel-base superalloys. Mater. Sci. Eng., A 527, 7939 (2010).Google Scholar
Omori, T., Oikawa, K., Sato, J., Ohnuma, I., Kattner, U.R., Kainuma, R., and Ishida, K.: Partition behavior of alloying elements and phase transformation temperatures in Co–Al–W-base quaternary systems. Intermetallics 32, 274 (2013).Google Scholar
Povstugar, I., Choi, P-P., Neumeier, S., Bauer, A., Zenk, C.H., Göken, M., and Raabe, D.: Elemental partitioning and mechanical properties of Ti- and Ta-containing Co–Al–W-base superalloys studied by atom probe tomography and nanoindentation. Acta Mater. 78, 78 (2014).Google Scholar
Pyczak, F., Bauer, A., Göken, M., Lorenz, U., Neumeier, S., Oehring, M., Paul, J., Schell, N., Schreyer, A., Stark, A., and Symanzik, F.: The effect of tungsten content on the properties of L12-hardened Co–Al–W alloys. J. Alloys Compd. 632, 110 (2015).Google Scholar
Bocchini, P.J., Lass, E.A., Moon, K-W., Williams, M.E., Campbell, C.E., Kattner, U.R., Dunand, D.C., and Seidman, D.N.: Atom-probe tomographic study of γ/γ′ interfaces and compositions in an aged Co–Al–W superalloy. Scr. Mater. 68, 563 (2013).Google Scholar
Meher, S., Yan, H-Y., Nag, S., Dye, D., and Banerjee, R.: Solute partitioning and site preference in γ/γ′ cobalt-base alloys. Scr. Mater. 67(10), 850 (2012).Google Scholar
Han, Y., Ma, W., Dong, Z., Li, S., and Gong, S.: Effect of ruthenium on microstructure and stress rupture properties of a single crystal nickelbase superalloy. In Proceedings Superalloys 2008, Reed, R.C., Green, K.A., Caron, P., Gabb, T.B., Fahrmann, M.G., Huron, E.S., and Woodard, S.A., eds. (The Minerals, Metals and Materials Society, Warrendale, PA, 2008); pp. 9197.Google Scholar
Brunner, M., Hüttner, R., Bölitz, M-C., Völkl, R., Mukherji, D., Rösler, J., Depka, T., Somsen, C., Eggeler, G., and Glatzel, U.: Creep properties beyond 1100 °C and microstructure of Co–Re–Cr alloys. Mater. Sci. Eng., A 528, 650 (2010).Google Scholar
Nash, A. and Nash, P.: Ni–Re (nickel–rhenium) system. Bull. Alloy Phase Diagrams 6, 348 (1985).Google Scholar
Mishima, Y., Ochiai, S., Hamao, N., Yodogawa, M., and Suzuki, T.: Solid solution hardening of Ni3Al with ternary additions. Trans. Jpn. Inst. Met. 27, 648 (1986).Google Scholar
Mishima, Y., Ochiai, S., Yodogawa, M., and Suzuki, T.: Mechanical properties of Ni3Al with ternary addition of transition metal elements. Trans. Jpn. Inst. Met. 27, 41 (1986).Google Scholar
Mughrabi, H.: The importance of sign and magnitude of γ/γ′ lattice misfit in superalloys—With special reference to the new γ′-hardened cobalt-base superalloys. Acta Mater. 81, 21 (2014).Google Scholar
Zhu, Z., Basoalto, H., Warnken, N., and Reed, R.C.: A model for the creep deformation behaviour of nickel-based single crystal superalloys. Acta Mater. 60, 4888 (2012).Google Scholar
Wazzan, A.R.: Lattice and grain boundary self-diffusion in nickel. J. Appl. Phys. 36, 3596 (1965).CrossRefGoogle Scholar
Bussmann, W., Herzig, C., Rempp, W., Maier, K., and Mehrer, H.: Isotope effect and self-diffusion in face-centred cubic cobalt. Phys. Status Solidi A 56, 87 (1979).Google Scholar
Pröbstle, M., Neumeier, S., Feldner, P., Rettig, R., Helmer, H.E., Singer, R.F., and Göken, M.: Improved creep strength of nickel-base superalloys by optimized γ/γ′ partitioning behavior of solid solution strengthening elements. Mater. Sci. Eng., A 676, 411 (2016).Google Scholar
Wollgramm, P., Buck, H., Neuking, K., Parsa, A.B., Schuwalow, S., Rogal, J., Drautz, R., and Eggeler, G.: On the role of Re in the stress and temperature dependence of creep of Ni-base single crystal superalloys. Mater. Sci. Eng., A 628, 382 (2015).Google Scholar
Schuwalow, S., Rogal, J., and Drautz, R.: Vacancy mobility and interaction with transition metal solutes in Ni. J. Phys.: Condens. Matter 26, 485014 (2014).Google Scholar