Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-24T12:35:01.795Z Has data issue: false hasContentIssue false

The influence of Nb and Zr on glass-formation ability in the ternary Fe–Nb–B and Fe–Zr–B and quaternary Fe–(Nb,Zr)–B alloy systems

Published online by Cambridge University Press:  31 January 2011

J.H. Yao
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
H. Yang
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
J. Zhang
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
J.Q. Wang*
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
Y. Li*
Affiliation:
Department of Materials Science and Engineering, National University of Singapore, Singapore 117576, Singapore
*
a)Address all correspondence to these authors. e-mail: [email protected]
b)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

Glass-forming ability (GFA) in relation to microstructure evolution in the ternary Fe–Nb–B and Fe–Zr–B and quaternary Fe–(Nb,Zr)–B systems was systematically studied in a three-dimensional composition space. Through navigating, it was revealed that alloys with the optimum glass-forming ability (GFA) are coupled with composition regions surrounded by competing crystalline phases. Alloys Fe71Nb6B23, Fe77Zr4B19, and Fe71(Nb0.8Zr0.2)6B23 were illustrated to be the best glass formers in the ternary Fe–Nb–B and Fe–Zr–B systems and the quaternary Fe–(Nb,Zr)–B system, respectively, with a critical size for amorphous formation up to 2 mm. They were compared with the theoretical predictions on the basis of an efficient dense-packing model, and good agreements were obtained.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Inoue, A., Shinohara, Y.Gook, J.S.: Thermal and magnetic properties of bulk Fe-based glassy alloys prepared by copper mold casting. Mater. Trans., JIM 36, 1427 1995CrossRefGoogle Scholar
2Inoue, A.Gook, J.S.: Effect of additional elements (M) on the thermal stability of supercooled liquid in Fe72–xAl5Ga2P11C6B4Mx glassy alloys. Mater. Trans., JIM 37, 32 1996CrossRefGoogle Scholar
3Inoue, A., Murakami, A., Zhang, T.Takeuchi, A.: Thermal stability and magnetic properties of bulk amorphous Fe-Al-Ga-P-C-B-Si alloys. Mater. Trans., JIM 38, 189 1997CrossRefGoogle Scholar
4Shen, B.L., Koshiba, H., Mizushima, T.Inoue, A.: Bulk amorphous Fe-Ga-P-B-C alloys with a large supercooled liquid region. Mater. Trans., JIM 41, 873 2000CrossRefGoogle Scholar
5Shen, T.D.Schwarz, R.B.: Bulk ferromagnetic glasses prepared by flux melting and water quenching. Appl. Phys. Lett. 75, 49 1999CrossRefGoogle Scholar
6Inoue, A., Zhang, T.Takeuchi, A.: Bulk amorphous alloys with high mechanical strength and good soft magnetic properties in Fe-TM-B (TM = IV–VIII group transition metal) system. Appl. Phys. Lett. 71, 464 1997CrossRefGoogle Scholar
7Shen, B.L., Inoue, A.Chang, C.T.: Superhigh strength and good soft-magnetic propertied of (Fe, Co)-B-Si-Nb bulk glassy alloys with high glass-forming ability. Appl. Phys. Lett. 85, 4911 2004CrossRefGoogle Scholar
8Inoue, A., Shen, B.L.Chang, C.T.: Super-high strength of over 4000 MPa for Fe-based bulk glassy alloys in [(Fe1–xCox)0.75B0.2Si0.05]96Nb4 system. Acta Mater. 52, 4093 2004CrossRefGoogle Scholar
9Amiya, K., Urata, A., Nishiyama, N.Inoue, A.: Fe-B-Si-Nb bulk metallic glasses with high strength above 4000 MPa and distinct plastic elongation. Mater. Trans., JIM 45, 1214 2004CrossRefGoogle Scholar
10Ponnambalam, V., Poon, S.J., Shiflet, G.J., Keooens, V.M., Taylor, R.Petculescu, G.: Synthesis of iron-based bulk metallic glass as nonferromagnetic amorphous steel alloys. Appl. Phys. Lett. 83, 1131 2003CrossRefGoogle Scholar
11Ponnambalam, V., Poon, S.J.Shiflet, G.J.: Fe-based bulk metallic glass with diameter thickness larger than one centimeter. J. Mater. Res. 19, 1320 2004CrossRefGoogle Scholar
12Ponnambalam, V., Poon, S.J.Shiflet, G.J.: Fe-Mn-Cr-Mo-(Y,Ln)-C-B (Ln = lanthanides) bulk metallic glasses as formable amorphous steel alloys. J. Mater. Res. 19, 3046 2004CrossRefGoogle Scholar
13Lu, Z.P., Liu, C.T., Thompson, J.R.Porter, W.D.: Structural amorphous steels. Phys. Rev. Lett. 92, 245503 2004CrossRefGoogle ScholarPubMed
14Shen, J., Chen, Q.J., Sun, J.F., Fan, H.B.Wang, G.: Exceptionally high glass forming ability of an FeCoCrMoCBY alloy. Appl. Phys. Lett. 86, 151907 2004CrossRefGoogle Scholar
15Zhang, J., Tan, H., Feng, Y.P.Li, Y.: The effect of Y on glass forming ability. Scripta Mater. 53, 183 2005CrossRefGoogle Scholar
16Lin, C.Y., Tien, H.Y.Chin, T.S.: Soft magnetic ternary iron-boron-based bulk metallic glasses. Appl. Phys. Lett. 86, 162501 2005CrossRefGoogle Scholar
17Zhu, A., Shiflet, G.Miracle, D.B.: Glass forming ranges of Al–rare earth metal alloys: Thermodynamic and kinetic analysis. Scripta Mater. 50, 987 2004CrossRefGoogle Scholar
18Fecht, H.J., Desre, P.J.Johnson, W.L.: Thermodynamic aspects of solid-State amorphization: Polymorphous melting clapeyron diagram. Philos. Mag. B 5, 577 1989CrossRefGoogle Scholar
19Egami, T.: The atomic structure of aluminum based metallic glasses and universal criterion for glass formation. J. Non-Cryst. Solids 205–207, 575 1996CrossRefGoogle Scholar
20Tan, H., Zhang, Y., Ma, D., Feng, Y.P.Li, Y.: Optimum glass formation at off-eutectic composition and its relation to skewed eutectic coupled zone in the La based La-Al-(Cu,Ni) pseudo ternary system. Acta Mater. 51, 4551 2003CrossRefGoogle Scholar
21Wang, D., Li, Y., Sun, B.B., Sui, M.L., Lu, K.Ma, E.: Bulk metallic glass formation in the binary Cu-Zr system. Appl. Phys. Lett. 84, 4029 2004CrossRefGoogle Scholar
22Wang, D., Tan, H.Li, Y.: Multiple maxima of GFA in three adjacent eutectics in Zr–Cu–Al alloy system: A metallographic way to pinpoint the best glass forming alloys. Acta Mater. 53, 2969 2005CrossRefGoogle Scholar
23Villars, P., Prince, A.Okamoto, H.: Handbook of Ternary Alloy Phase Diagrams ASM International Materials Park, OH 1997Google Scholar
24Turnbull, D.: Under what conditions can a glass be formed. Contemp. Phys. 10, 473 1969CrossRefGoogle Scholar
25Senkov, O.N.Miracle, D.B.: Effect of the atomic size distribution on glass forming ability of amorphous metallic alloys. Mater. Res. Bull. 36, 2183 2001CrossRefGoogle Scholar
26Miracle, D.B.: The efficient cluster packing model: An atomic structure model for metallic glasses. Acta Mater. 54, 4317 2006CrossRefGoogle Scholar
27Wang, A.P., Wang, J.Q.Ma, E.: Modified efficient cluster packing model for calculating alloy compositions with high glass forming ability. Appl. Phys. Lett. 90, 121912 2007CrossRefGoogle Scholar
28Takeuchi, A.Inoue, A.: Calculations of mixing enthalpy and mismatch entropy for ternary amorphous alloys. Mater. Trans., JIM 41, 1372 2000CrossRefGoogle Scholar
29Stoica, M., Hajlaoui, K., Lemoulec, A.Yavari, A.R.: New ternary Fe-based bulk metallic glass with high boron content. Philos. Mag. Lett. 86, 267 2006CrossRefGoogle Scholar
30Greer, A.L.: Metallic glasses. Science 267, 1947 1995CrossRefGoogle ScholarPubMed