Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T00:35:32.678Z Has data issue: false hasContentIssue false

Influence of Mn incorporation on structural, optical emission and polarization switching aspect of PbO-free nanoscale PbTiO3 systems

Published online by Cambridge University Press:  30 October 2012

Manjit Borah
Affiliation:
Department of Physics, Nanoscience and Soft Matter Laboratory, Tezpur University, Tezpur-784028, Assam, India
Dambarudhar Mohanta*
Affiliation:
Department of Physics, Nanoscience and Soft Matter Laboratory, Tezpur University, Tezpur-784028, Assam, India
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The effect of Mn incorporation into lead titanate (PbTiO3, abbreviated as PT) host lattice is being studied, and the corresponding variation with regard to tetragonality, radiative emission, and ferroelectric response is highlighted. The Mn doping has a weak dependency on the average crystallite size and is found to be within 34–39 nm for both Mn-free and Mn-included PT nanostructures. The tetragonality (c/a ratio) is found to increase with Mn level thus giving a maximum value of 1.061 for 10% Mn doping (Mn/Ti = 0.1). Further, a prominent splitting of (001) and (100) peaks in the diffractograms confirms the tetragonal characteristics of PT nanosystem. Apart from the luminescence peaks due to direct electron deexcitation and the localized states observable in the violet and blue regimes, the association of Mn2+-related orange–red emission (λ = 580 nm) was observed for Mn-incorporated PT systems. The P-E hysteresis trace exhibited a minimum tilting of ∼28° for a system that contained 10% Mn level. As a consequence of polarization switching, the effect of Mn content on remnant polarization and critical field is discussed in the light of domain wall motion and depolarization field due to surface dielectric layers. The injection of magnetic ions into nanoscale ferroelectrics is promising, which would bring insight to the understanding of charge–spin interactions for application in polarization reversal/switching elements.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Lemos, F.C.D., Longo, E., Leite, E.R., Melo, D.M.A., and Silva, A.O.: Synthesis of nanocrystalline ytterbium modified PbTiO3. J. Solid State Chem. 177, 1542 (2004).CrossRefGoogle Scholar
Sirera, R. and Calzada, M.L.: Multicomponent solutions for the deposition of modified lead titanate films. Mater. Res. Bull. 30(1), 11 (1995).CrossRefGoogle Scholar
Sun, L., Chen, Y.F., Ma, W.H., Wang, L.W., Yu, T., Zhang, M.S., and Ming, N.B.: Evidence of ferroelectricity weakening in the polycrystalline PbTiO3 thin films. Appl. Phys. Lett. 68, 3728 (1996).CrossRefGoogle Scholar
Ikegami, S., Ueda, I., and Nagata, T.: Electromechanical properties of PbTiO3 ceramics containing La and Mn. J. Acoust. Soc. Am. 50(4A), 1060 (1971).CrossRefGoogle Scholar
Jacob, K., Panicker, N., Selvam, I., and Kumar, V.: Sol-gel synthesis of nanocrystalline PZT using a novel system. J. Sol-Gel Sci. Technol. 28(3), 289 (2003).CrossRefGoogle Scholar
Moon, J., Li, T., Randall, C.A., and Adair, J.H.: Low temperature synthesis of lead titanate by a hydrothermal method. J. Mater. Res. 12(1), 189 (1997).CrossRefGoogle Scholar
Szafraniak, I., Połomska, M., and Hilczer, B.: XRD, TEM and Raman scattering studies of PbTiO3 nanopowders. Cryst. Res. Technol. 41(6), 576 (2006).CrossRefGoogle Scholar
Kim, S., Jun, M., and Hwang, S.: Preparation of undoped lead titanate ceramics via sol-gel processing. J. Am. Ceram. Soc. 82(2), 289 (1999).CrossRefGoogle Scholar
Kumar, M. and Yadav, K.L.: Study of dielectric, magnetic, ferroelectric and magnetoelectric properties in the PbMnxTi1−xO3 system at room temperature. J. Phys. Condens. Matter 19(24), 242202 (2007).CrossRefGoogle ScholarPubMed
Iakovlev, S., Solterbeck, C.H., Souni, M.E., and Zaporojtchenko, V.: Rare-earth ions doping effects on the optical properties of sol–gel fabricated PbTiO3 thin films. Thin Solid Films 446(1), 50 (2004).CrossRefGoogle Scholar
Lemos, F.C.D., Melo, D.M.A., and da Silva, J.E.C.: Photoluminescence of Er3+ doped in PbTiO3 perovskite-type obtained via polymeric precursor method. Optics Commun. 231, 251 (2004).CrossRefGoogle Scholar
Erdem, E., Jakes, P., Parashar, S.K.S., Kiraz, K., Somer, M., Rudiger, A., and Eichel, R.A.: Defect structure in aliovalently-doped and isovalently-substituted PbTiO3 nano-powders. J. Phys. Condens. Matter 22(34), 345901 (2010).CrossRefGoogle ScholarPubMed
Lemos, F.C.D., Melo, D.M.A., and da Silva, J.E.C.: Up-conversion luminescence in Er3+/Yb3+-codoped PbTiO3 perovskite obtained via Pechini method. Mater. Res. Bull. 40(1), 187 (2005).CrossRefGoogle Scholar
Ren, Z., Xu, G., Wei, X., Liu, Y., Hou, X., Du, P., Weng, W., Shen, G., and Han, G.: Room-temperature ferromagnetism in Fe-doped PbTiO3 nanocrystals. Appl. Phys. Lett. 91(6), 063106 (2007).CrossRefGoogle Scholar
Xiao, Z., Ren, Z., Liu, Z., Wei, X., Xu, G., Liu, Y., Li, X., Shen, G., and Han, G.: Single-crystal nanofibers of Zr-doped new structured PbTiO3: Hydrothermal synthesis, characterization and phase transformation. J. Mater. Chem. 21(11), 3562 (2011).CrossRefGoogle Scholar
Sawyer, C.B. and Tower, C.H.: Rochelle salt as a dielectric. Phys. Rev. 35(3), 269 (1930).CrossRefGoogle Scholar
Paris, E.C., Gurgel, M.F.C., Boschi, T.M., Joya, M.R., Pizani, P.S., Souza, A.G., Leite, E.R., Varela, J.A., and Longo, E.: Investigation on the structural properties in Er-doped PbTiO3 compounds: A correlation between experimental and theoretical results. J. Alloys Compds. 462(1–2), 157 (2008).CrossRefGoogle Scholar
Izumi, M., Konishi, Y., Nishihara, T., Hayashi, S., Shinohara, M., Kawasaki, M., and Tokura, Y.: Atomically defined epitaxy and physical properties of strained La0.6Sr0.4MnO3 films. Appl. Phys. Lett. 73, 2497 (1998).CrossRefGoogle Scholar
Roy, A.C. and Mohanta, D.: Optimum Mn-doping, effective tetragonality, and correlated luminescence characteristics of PbTiO3 nanoparticles. Philos. Mag. Lett. 91(6), 423 (2011).CrossRefGoogle Scholar
de Lazaro, S., Longo, E., Sambrano, J.R., and Beltran, A.: Structural and electronic properties of PbTiO3 slabs: A DFT periodic study. Surf. Sci. 552(1–3), 149 (2004).CrossRefGoogle Scholar
Mousavi, S.J., Abolhassani, M.R., Poorahmad, P., Javid-Jam, A., and Poorhabib-yekta, A.: Ab inito calculation of paraelectric state of PbTiO3. J. Appl. Math. 5(17), 25 (2008).Google Scholar
Leite, E.R., Santos, L.P.S., Carreno, N.L.V., Longo, E., Paskocimas, C.A., Varela, J.A., Lanciotti, F. Jr., Campos, C.E.M., and Pizani, P.S.: Photoluminescence of nanostructured PbTiO3 processed by high-energy mechanical milling. Appl. Phys. Lett. 78(15), 2148 (2001).CrossRefGoogle Scholar
Gu, H., Hu, Y., You, J., Hu, Z., Yuan, Y., and Zhang, T.: Characterization of single-crystalline PbTiO3 nanowire growth via surfactant-free hydrothermal method. J. App. Phys. 101, 024319 (2007).CrossRefGoogle Scholar
Leite, E.R., Paris, E.C., Pontes, F.M., Paskocimas, C.A., Longo, E., Sensato, F., Pinheiro, C.D., Varela, J.A., Pizani, P.S., and Campos, C.E.M.: The origin of photoluminescence in amorphous lead titanate. J. Mater. Sci. 38(6), 1175 (2003).CrossRefGoogle Scholar
Liu, L., Ning, T., Ren, Y., Sun, Z., Wang, F., Zhou, W., Xie, S., Song, L., Luo, S., Liu, D., Shen, J., Ma, W., and Zhou, Y.: Synthesis, characterization, photoluminescence and ferroelectric properties of PbTiO3 nanotube arrays. Mat. Sci. Eng., B 149(1), 41 (2008).CrossRefGoogle Scholar
Eglitis, R.I., Kotomin, E.A., Trepakov, V.A., Kapphan, S.E., and Borstel, G.: Quantum chemical modelling of electron polarons and ‘green’ luminescence in PbTiO3 perovskite crystals. J. Phys. Condens. Matter 14(39), L647 (2002).CrossRefGoogle Scholar
Yan, Q., Liu, Y., Chen, G., Da, N., and Wondraczek, L.: Photoluminescence of Mn2+ centers in chalcohalide glasses. J. Am. Ceram. Soc. 94, 660 (2011).CrossRefGoogle Scholar
Wang, Y.G., Zhong, W.L., Zhang, P.L., and Kong, D.S.: Stress and its effect on PbTiO3 films. Ferroelectrics 197, 31 (1991).CrossRefGoogle Scholar
Damjanovic, D.: Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep. Prog. Phys. 61(9), 1267 (1998).CrossRefGoogle Scholar
Shur, V.Y. and Rumyantsev, E.L.: Crystal growth and domain structure evolution. Ferroelectrics 142(1), 1 (1993).CrossRefGoogle Scholar
Tagantsev, A.K., Landivar, M., Colla, E., and Setter, N.: Identification of passive layer in ferroelectric thin films from their switching parameters. J. Appl. Phys. 78(4), 2623 (1995).CrossRefGoogle Scholar
Roy, A.C. and Mohanta, D.: Structural and ferroelectric properties of solid-state derived carbonate-free barium titanate (BaTiO3) nanoscale particles. Scr. Mater. 61(9), 891 (2009).CrossRefGoogle Scholar
Whatmore, R.W.: Pyroelectric devices and materials. Rep. Prog. Phys. 49(12), 1335 (1986).CrossRefGoogle Scholar
Zhang, Q.: Effects of Mn doping on the ferroelectric properties of PZT thin films. J. Phys. D: Appl. Phys. 37(1), 98 (2004).CrossRefGoogle Scholar
Wu, Y., Wang, X., Zhong, C., and Li, L.: Effect of Mn doping on microstructure and electrical properties of the (Na0.85K0.15)0.5Bi0.5TiO3 thin films prepared by sol–gel method. J. Am. Ceram. Soc. 94(11), 3877 (2011).CrossRefGoogle Scholar