Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-24T10:59:38.098Z Has data issue: false hasContentIssue false

Influence of distributed trap states on the characteristics of top and bottom contact organic field-effect transistors

Published online by Cambridge University Press:  03 March 2011

T. Lindner
Affiliation:
Leibniz Institute for Solid State and Materials Research Dresden, PF 270016, D-01171 Dresden, Germany
G. Paasch*
Affiliation:
Leibniz Institute for Solid State and Materials Research Dresden, PF 270016, D-01171 Dresden, Germany
S. Scheinert
Affiliation:
Ilmenau Technical University, Institute of Solid State Electronics and Center of Micro- and Nanotechnologies, PF 100565, D-98684 Ilmenau, Germany
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Numerical simulations of organic field-effect transistors (OFET) of bottom and top contact (BOC, TOC) design with different source/drain contacts were carried out considering an exponential distribution of trap states in the gap of the active layer (a-Si model). For ohmic contacts, the current-voltage characteristics are similar to the trap-free case and there is not much difference between the two designs. However, the currents are lower due to immobile trapped charges, the threshold voltage is shifted, and the inverse subthreshold slope increases due to trap recharging. An analytical approximation for the effective mobility deviates from the simulation up to 20%. For low source/drain work function, there occur particular dependencies of the current on the gate voltage for the two designs, which are explained with the internal concentration and field profiles. A series resistance between source and channel causes in the TOC structure an abrupt transition from the gate voltage independent active region into saturation. In the BOC case, the reverse-biased Schottky-type source contact dominates the current. Through simulation of measured characteristics of prepared OFETs based on a modified poly-(phenylene-vinylene), the observed hysteresis is analyzed.

Type
Articles—Organic Electronics Special Section
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Sirringhaus, H., Tessler, N. and Friend, R.H.: Integrated optoelectronic devices based on conjugated polymers. Science 280, 1741 (1998).Google Scholar
2.Dodabalapur, A., Bao, Z., Makhija, A., Laquindanum, J.G., Raju, V.R., Feng, Y., Katz, H.E. and Rogers, J.: Organic smart pixels. Appl. Phys. Lett. 73, 142 (1998).Google Scholar
3.Matters, M., de Leeuw, D.M., Vissenberg, M.J.C.M., Hart, C.M., Herwig, P.T., Geuns, T., Mutsaers, C.M.J. and Drury, C.J.: Organic field-effect transistors and all-polymer integrated circuits. Optical Materials 12, 189 (1999).CrossRefGoogle Scholar
4.Crone, B., Dodabalapur, A., Lin, Y-Y., Filas, R.W., Bao, Z., LaDuca, A., Sarpeshkar, R., Katz, H.E. and Li, W.: Large-scale complementary integrated circuits based on organic transistors. Nature 403, 521 (2000).CrossRefGoogle ScholarPubMed
5.Gelinck, G.H., Geuns, T.C.T. and de Leeuw, D.M.: High-performance all-polymer integrated circuits. Appl. Phys. Lett. 77, 1487 (2000).Google Scholar
6.Drury, C.J., Mutsaers, C.M.J., Hart, C.M., Matters, M. and de Leeuw, D.M.: Low-cost all-polymer integrated circuits. Appl. Phys. Lett. 73(1), 108 (1998).Google Scholar
7.Lin, Y-Y., Dodabalapur, A., Sarpeshkar, R., Bao, Z., Li, W., Baldwin, K., Raju, V.R. and Katz, H.E.: Organic complementary oscillators. Appl. Phys. Lett. 74, 2714 (1999).Google Scholar
8.Brown, A.R., Pomp, A., de Leeuw, D.M., Klaassen, D.B.M. and Havinga, E.E.: Precursor route pentacene metal-insulator-semiconductor field-effect transistors. J. Appl. Phys. 79, 2136 (1996).CrossRefGoogle Scholar
9.Koezuka, H., Tsumura, A., Fuchigami, H. and Kuramoto, K.: Polythiophene field-effect transistor with polypyrrole worked as source and drain electrodes. Appl. Phys. Lett. 62, 1794 (1993).Google Scholar
10.Fuchigami, H., Tsumura, A. and Koezuka, H.: Polythienylenevinylene thin-film transistor with high carrier mobility. Appl. Phys. Lett. 63, 1372 (1993).Google Scholar
11.Sze, S.M.: Physics of Semiconductor Devices, 2nd ed. (John Wiley & Sons; New York, Chichester, Brisbane, Toronto, Singapore, 1981)Google Scholar
12.Brown, A.R., de Leeuw, D.M., Havinga, E.E. and Pomp, A.: A universal relation between conductivity and field-effect mobility in doped amorphous organic semiconductors. Synth. Met. 68, 65 (1994).CrossRefGoogle Scholar
13.Scheinert, S., Paasch, G., Pohlmann, S., Hörhold, H-H. and Stockmann, R. Field effect in organic devices based on solution-doped Arylamino-PPV. Proceedings ESSDERC’99, Editions Frontiers, 1999, p. 704Google Scholar
14.Scheinert, S., Paasch, G., Pohlmann, S., Hörhold, H-H. and Stockmann, R.: Field effect in organic devices with solution-doped arylamino-poly-(p-phenylene-vinylene). Solid-State Electronics 44, 845 (2000).CrossRefGoogle Scholar
15.Paasch, G., Scheinert, S. and Tecklenburg, R. Theory and modelling of organic field effect transistors. Proceedings ESSDERC’97, edited by Grünbacher, H., Editions Frontiers, 1997, p. 636Google Scholar
16.Tecklenburg, R., Paasch, G. and Scheinert, S.: Theory of organic field effect transistors. Adv. Mater. Opt. Electron. 8, 285 (1998).3.0.CO;2-Z>CrossRefGoogle Scholar
17.Scheinert, S., Paasch, G., Tecklenburg, R. and Schipanski, D. Organic FET current characteristics: Extraction of unusual field dependencies of hopping mobilities. Proceedings ESSDERC’98, edited by Touboul, A., Danto, Y., Klein, J.P., Grünbacher, H., Editions Frontiers, 1998, p. 628Google Scholar
18.Scheinert, S., Paasch, G., Tecklenburg, R. and Schipanski, D. A novel method to determine field dependencies of mobilities from MOSFET current characteristics. 43rd International Scientific Colloquium 1998, edited by Gens, W., Ilmenau, TU, 1998, p. 305Google Scholar
19.Vissenberg, M.C.J.M. and Matters, M.: Theory of the field-effect mobility in amorphous organic transistors. Phys. Rev. 57, 12964 (1998).CrossRefGoogle Scholar
20.Horowitz, G. and Delannoy, P.: An analytical model for organic-based thin-film transistors. J. Appl. Phys. 70, 469 (1991).CrossRefGoogle Scholar
21.Scheinert, S., Paasch, G., Schrödner, M., Roth, H-K., Sensfuβ, S. and Doll, Th.: Subthreshold characteristics of field effect transistors based on P3DDT and an organic insulator. J. Appl. Phys. 92, 330 (2002).Google Scholar
22.Tessler, N. and Roichman, Y.: Two-dimensional simulation of polymer field-effect transistor. Appl. Phys. Lett. 79, 2987 (2001).Google Scholar
23.Roichman, Y. and Tessler, N.: Structures of polymer field-effect transistor: Experimental and numerical analyses. Appl. Phys. Lett. 80, 151 (2002).Google Scholar
24.Li, T., Balk, J.W., Ruden, P.P., Campbell, I.H. and Smith, D.L.: Channel formation in organic field-effect transistors. J. Appl. Phys. 91, 4312 (2002).Google Scholar
25.Li, T., Ruden, P.P., Campbell, I.H. and Smith, D.L.: Investigation of bottom-contact organic field effect transistors by two-dimensional device modeling. J. Appl. Phys. 93, 4017 (2003).Google Scholar
26.Shur, M., Hack, M. and Shaw, J.G.: A new analytic model for amorphous silicon thin-film transistors. J. Appl. Phys. 66, 3371 (1989).CrossRefGoogle Scholar
27.Shur, M. and Hack, M.: Physics of amorphous silicon based alloy field-effect transistors. J. Appl. Phys. 55, 3831 (1984).Google Scholar
28.Shaw, J.G. and Hack, M.: An analytic model for calculating trapped charge in amorphous silicon. J. Appl. Phys. 64, 4562 (1988).Google Scholar
29.Chung, K.Y. and Neudeck, G.W.: Analytical modelling of a-Si:H thin-film transistors. J. Appl. Phys. 62, 4617 (1987).CrossRefGoogle Scholar
30. ATLAS User’s Manual Version 1.5.0, Device Simulation Software (SILVACO International, Santa Clara, CA, 1997).Google Scholar
31.Horowitz, G., Hajlaoui, R. and Delannoy, P.: Temperature dependence of the field-effect mobility of sexithiophene. Determination of the density of traps. J. Phys III. 5, 355 (1995).Google Scholar
32.Schauer, F.: Temperature dependent field effect in organic-based thin-film transistor and its spectroscopic character. J. Appl. Phys. 86, 524 (1999).Google Scholar
33.Horowitz, G.: Organic field-effect transistors. Adv. Mater. 10, 365 (1998).Google Scholar
34.Horowitz, G., Hajlaoui, M.E. and Hajlaoui, R.: Temperature and gate voltage dependence of hold mobility in polycrystalline oligothiophene thin film transistors. J. Appl. Phys. 87, 4456 (2000).Google Scholar
35.Scheinert, S., Paasch, G. and Lindner, T.: Relevance of organic field effect transistor models: Simulation vs. Experiment. Synth. Met. 137, 1451 (2003).Google Scholar
36.ISE-TCAD, Integrated Systems Engineering AG (Zürich, Switzerland, 19951999)Google Scholar
37.Scheinert, S., Paasch, G., Nguyen, P.H., Berleb, S. and Brütting, W. Transient I-V characteristics of OLEDs with deep traps. Proceedings ESSDERC’00, edited by Lane, W.A., Crean, G.M., McCabe, F.A., and Grünbacher, H., Editions Frontiers, 2000, p. 444Google Scholar
38.Nguyen, P.H., Scheinert, S., Berleb, S., Brütting, W. and Paasch, G.: The influence of deep traps on transient current-voltage characteristics of organic light-emitting diodes. Org. Electron. 2, 105 (2001).CrossRefGoogle Scholar
39.Nesterov, A., Paasch, G., Scheinert, S. and Lindner, T.: Simulation study of the influence of polymer modified anodes on organic LED performance. Synth. Met. 130, 165 (2002).Google Scholar
40.Scheinert, S. and Schliefke, W.: Analyzes of filed effect devices based on poly-(3-octoylthiophene). Synth. Met. 139, 501 (2003).Google Scholar
41.Brown, P.J., Sirringhaus, H., Harrison, M., Shkunov, M. and Friend, R.H.: Optical spectroscopy of field-induced charge in self-organized high mobility poly(3-hexylthiophene). Phys. Rev. B 63, 125204 (2001).Google Scholar
42.Brown, A.R., Jarrett, C.P., de Leeuw, D.M. and Matters, M.: Field-effect transistors made from solution-processed organic semiconductors. Synth. Met. 88, 37 (1997).CrossRefGoogle Scholar
43.Paasch, G.Transport in doped conjugated polymers with polarons and bipolarons forming complexes with counter ions. Solid State Ionics 169, 87 (2004).CrossRefGoogle Scholar