Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T11:58:01.479Z Has data issue: false hasContentIssue false

Influence of boron content on the amorphization rate of Co–B mixtures by mechanical alloying

Published online by Cambridge University Press:  31 January 2011

A. Corrias
Affiliation:
Dipartimento di Scienze Chimiche, Università di Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
G. Ennas
Affiliation:
Dipartimento di Scienze Chimiche, Università di Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
G. Marongiu
Affiliation:
Dipartimento di Scienze Chimiche, Università di Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
A. Musinu
Affiliation:
Dipartimento di Scienze Chimiche, Università di Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
G. Paschina
Affiliation:
Dipartimento di Scienze Chimiche, Università di Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
Get access

Abstract

Amorphous cobalt-boron alloy powders have been prepared by a high energetic ball mill at room temperature starting from different Co/B ratios. They were characterized by means of x-ray diffraction, scanning and transmission electron microscopy, and differential scanning calorimetry. Ball milling of Co–B mixtures induces solid-state amorphization which becomes faster with increasing boron content. After maximum amorphization ball milling leads to crystallization of t-Co2B in all the binary samples.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1New Materials by Mechanical Alloying Techniques, edited by Arzt, E. and Schultz, L. (DGM Informationsgesellschaft, Verlag, Oberursel, Germany, 1988).Google Scholar
2Multilayer Amorphisation by Solid-State-Reaction and Mechanical Alloying, edited by Yavari, A. R. and Desre, P. J. (Les Editions de Physique, Les Ulis, France, 1990).Google Scholar
3Schwarz, R. B. and Johnson, W. L., Phys. Rev. Lett. 51, 415 (1983).CrossRefGoogle Scholar
4Campbell, A.N., Barbour, J.C., Hills, C.R., and Nastasi, M., J. Mater. Res. 4, 1303 (1989).CrossRefGoogle Scholar
5Yavari, A. R. and Desre, P. J., Mater. Sci. Eng. A134, 1315 (1991).CrossRefGoogle Scholar
6Calka, A., Radlinski, A. P., and Shanks, R., Mater. Sci. Eng. A133, 555 (1991).CrossRefGoogle Scholar
7Ogasawara, T., Inoue, A., and Masumoto, T., Mater. Sci. Eng. A134, 1338 (1991).CrossRefGoogle Scholar
8Morris, N. A. and Morris, D.G., Colloq. Phys. C4 14, 211 (1990).Google Scholar
9Kubaschewski, O. and Alcock, C., Metallurgical Thermochemistry, 5th ed. (Pergamon Press, New York, 1979).Google Scholar
10Corrias, A., Ennas, G., Marongiu, G., and Paschina, G., J. Mater. Sci. 26, 5081 (1991).CrossRefGoogle Scholar
11Corrias, A., Ennas, G., Licheri, G., Marongiu, G., and Paschina, G., Mater. Sci. Eng. A145, 123 (1991).CrossRefGoogle Scholar
12Powder Diffraction File, Card No. 6–0696 (International Center for Diffraction Data, Swarthmore, PA).Google Scholar
13Powder Diffraction File, Card No. 5–0727 (International Center for Diffraction Data, Swarthmore, PA).Google Scholar
14Powder Diffraction File, Card. No. 15–806 (International Center for Diffraction Data, Swarthmore, PA).Google Scholar
15Powder Diffraction File, Card. No. 3–0878 (International Center for Diffraction Data, Swarthmore, PA).Google Scholar
16Miedema, A.R., Chatel, P.F. de, and Boer, F.R. De, Physica B 100, 1 (1980).Google Scholar
17Corrias, A., Ennas, G., Marongiu, G., Musinu, A., and Paschina, G., J. Non-Cryst. Solids, in press.Google Scholar
18Guo-hua, T. and Wan-rong, C., Mater. Sci. Eng. 97, 329 (1988).CrossRefGoogle Scholar
19Guo-hua, T., You-guo, Z., and Altounian, Z., J. Non-Cryst. Solids 117/118, 371 (1990).CrossRefGoogle Scholar