Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T17:57:34.824Z Has data issue: false hasContentIssue false

Influence of Annealing on the 1.5 μm Light Emission of Er-doped ZnO Thin Films and its Crystal Quality

Published online by Cambridge University Press:  03 March 2011

Yukari Ishikawa*
Affiliation:
Japan Fine Ceramics Center, Atsuta, Nagoya 456-8587, Japan
Mitsuhiro Okamoto
Affiliation:
Japan Fine Ceramics Center, Atsuta, Nagoya 456-8587, Japan
Shigeru Tanaka
Affiliation:
Japan Fine Ceramics Center, Atsuta, Nagoya 456-8587, Japan
Dai Nezaki
Affiliation:
Japan Fine Ceramics Center, Atsuta, Nagoya 456-8587, Japan
N. Shibata
Affiliation:
Japan Fine Ceramics Center, Atsuta, Nagoya 456-8587, Japan
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Intensity variation of 1.5 μm light emission at room temperature from Er-doped epitaxial and polycrystal ZnO films depending on annealing temperature (773–1373 K) was studied. As-grown Er-doped epitaxial ZnO film emitted 1.5 μm photoluminescence(PL) higher than as-grown Er-doped polycrystal ZnO. It was found that the annealing in air increases PL intensity and the maximum PL intensity was obtained by annealing at optimal temperature (1073 K). Spectrum shape and intensity of 1.5 μm PL of Er-doped epitaxial ZnO after annealing at 1073 K resembled those of Er-doped polycrystal ZnO after annealing at 1073 K. X-ray diffraction measurement demonstrated that annealing improves crystal quality of Er-doped ZnO film. We assumed that the process of 1.5 μm light emission is dependent on local area placement of Zn and O atoms around Er as well as crystal quality of ZnO.

Type
Articles
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Polman, A.: Erbium implanted thin film photonic materials. J. Appl. Phys. 82, 1 (1997).CrossRefGoogle Scholar
2Lombardo, S., Campisano, S.U., van den Hoven, G.N., Cacciato, A. and Polman, A.: Room-temperature luminescence from Er-implanted semi-insulating polycrystalline silicon. Appl. Phys. Lett. 63, 1942 (1993).CrossRefGoogle Scholar
3Serna, R., Shin, J.H., Lohmeier, M., Vlieg, E., Polman, A. and Alkemade, P.F.A.: Incorporation and optical activation of erbium in silicon using molecular beam epitaxy. J. Appl. Phys. 79, 2658 (1996).CrossRefGoogle Scholar
4Matsuoka, M. and Tohno, S.: 1.54 μm photoluminescence of in situ erbium-oxygen co-doped silicon films grown by ion-beam epitaxy. J. Appl. Phys. 78, 2751 (1995).CrossRefGoogle Scholar
5Shin, J.H., Kim, M.J., Seo, S. and Lee, C.: Composition dependence of room temperature 1.54 μm Er3+ luminescence from erbium-doped silicon:oxygen thin films deposited by electron cyclotron resonance plasma enhanced chemical vapor deposition. Appl. Phys. Lett. 72, 1092 (1998).CrossRefGoogle Scholar
6Ni, W-X., Joelsson, K.B., Du, C-X., Buyanova, I.A., Pozina, G., Chen, W.M., Hansson, G.V., Monemar, B., Cardenas, J. and Svensson, B.G.: Er/O and Er/F doping during molecular beam epitaxial growth of Si layers for efficient 1.54 μm light emission. Appl. Phys. Lett. 70, 3383 (1997).CrossRefGoogle Scholar
7Fujii, M., Yoshida, M., Kanzawa, Y., Hayashi, S. and Yamamoto, K.: 1.54 μm photoluminescence of Er3+ doped into SiO2 films containing Si nanocrystals: Evidence for energy transfer from Si nanocrystals to Er3+. Appl. Phys. Lett. 71, 1198 (1997).CrossRefGoogle Scholar
8Komuro, S., Maruyama, S., Morikawa, T., Zhao, X., Isshiki, H. and Aoyagi, Y.: Room-temperature luminescence from erbium-doped silicon thin films prepared by laser ablation. Appl. Phys. Lett. 69, 3896 (1996).CrossRefGoogle Scholar
9Ng, W.L., Temple, M.P., Childs, P.A., Wellhofer, F. and Homewood, K.P.: Photoluminescence and photoluminescence excitation spectroscopy of Er-doped Si prepared by laser ablation. Appl. Phys. Lett. 75, 97 (1999).CrossRefGoogle Scholar
10Mais, N., Reithmaier, J.P., Forchel, A., Kohls, M., Spanhel, L. and Muller, G.: Er doped nanocrystalline ZnO planar waveguide structures for 1.55 μm amplifier applications. Appl. Phys. Lett. 75, 2005 (1999).CrossRefGoogle Scholar
11Komuro, S., Katsumata, T., Morikawa, T., Zhao, X., Isshiki, H. and Aoyagi, Y.: 1.54 μm emission dynamics of erbium-doped zinc-oxide thin films. Appl. Phys. Lett. 76, 3935 (2000).CrossRefGoogle Scholar
12Komuro, S., Katsumata, T., Morikawa, T., Zhao, X., Isshiki, H. and Aoyagi, Y.: Highly erbium-doped zinc-oxide thin film prepared by laser ablation and its 1.54 μm emission dynamics. J. Appl. Phys. 88, 7129 (2000).Google Scholar
13Ishikawa, Y., Okamoto, M. and Shibata, N.: Room temperature 1.54 μm light emission from Er-doped epitaxial ZnO thin film. J. Ceram. Soc. Jpn. 112, S1119 (2004).Google Scholar
14Kondo, K., Harada, M. and Shibata, N.: Epitaxial growth of ZnO/AlN heterostructures on sapphire and Si substrates. J. Ceram. Soc. Jpn. 110, 343 (2002).CrossRefGoogle Scholar
15Okamoto, M., Ishikawa, Y., Kondo, K. and Shibata, N.: Photoluminescence of undoped and rare-earth-element doped ZnO thin films prepared by rf magnetron sputtering. J. Ceram. Soc. Jpn. 112, 1115 (2004).Google Scholar
16 Joint Committee of Powder Diffraction Standards (International Center for Diffraction Data, Swarthmore, PA, 1992), Powder Diffraction File, No. 36-1451.Google Scholar
17Tanaka, S., Ishikawa, Y., Okamoto, M., Nezaki, D., and Shibata, N.: Intense band-edge emission and structural characterization of zinc oxide thin film sputtered at low temperature. J. Am. Ceram. Soc. (submitted).Google Scholar
18Ishii, M., Komuro, S., Morikawa, T. and Aoyagi, Y.: Local structure analysis of an optically active center in Er-doped ZnO thin film. J. Appl. Phys. 89, 3679 (2001).CrossRefGoogle Scholar