Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T03:16:47.781Z Has data issue: false hasContentIssue false

Influence of additives on the properties of spherical nickel particles prepared by ultrasonic spray pyrolysis

Published online by Cambridge University Press:  31 January 2011

S. Stopić
Affiliation:
Faculty of Technology and Metallurgy, Belgrade, Yugoslavia
J. Nedeljković
Affiliation:
Vinča Institute of Nuclear Sciences, Belgrade, Yugoslavia
Z. Rakočević
Affiliation:
Vinča Institute of Nuclear Sciences, Belgrade, Yugoslavia
D. Uskoković
Affiliation:
Institute of Technical Sciences, Serbian Academy of Sciences and Arts, Belgrade, Yugoslavia
Get access

Abstract

Ideal spherical nonagglomerated Ni particles (mean diameter 0.62–1.12 μm) were prepared by ultrasonic spray pyrolysis of NiCl2 aqueous solution in the presence of 0.1 mass% of Pd, Cu, or Ni in an H2–N2 atmosphere at 900 °C. Incomplete reduction of the NiCl2 aqueous solution in the absence of additives was observed under the same conditions. Differential thermal and thermal-gravimetric analyses revealed a decrease in initial reduction temperature of NiCl2 from 375 to 275 °C by the addition of Pd, Cu, or Ni. The morphology of Ni particles was analyzed using scanning tunneling microscopy. The surface roughness of Ni particles was found to be controllable by addition of appropriate additives.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Nagashima, K., Wada, M., and Kato, A., J. Mater. Res. 5, 2829 (1990).CrossRefGoogle Scholar
2.Stopić, S., Ilić, I., and Uskoković, D., Mat. Lett. 24, 369 (1995).CrossRefGoogle Scholar
3.Yentis, A., Haller, G., and Lercher, J., J. Phys. Chem. 97, 484 (1993).Google Scholar
4.Smith, K.A. and Iwasaky, I., Min. Metall. Process. 2, 42 (1985).Google Scholar
5.Alex, P., Mukherjee, T., and Sundaresan, M., Hydrometallurgy 34, 239 (1993).CrossRefGoogle Scholar
6.Šušić, M., J. Serb. Chem. Soc. 60, 1111 (1995).Google Scholar
7.Stopić, S., Ilić, I., and Uskoković, D., Int. J. Powd. Met. 32, 59 (1996).Google Scholar
8.Khoobiar, S., J. Phys. Chem. 64, 411 (1964).Google Scholar
9.Stopić, S., Ilić, I., and Uskoković, D., Metall. Mat. Trans. 28B, 1241 (1997).CrossRefGoogle Scholar
10.Williams, D., El Rahaiby, S., and Rao, Y., Metall. Trans. 12B, 161, 192 (1981).Google Scholar
11.Konchakovskaya, L., Skorokhod, V., and Uvarova, I., Metalli 2, 26 (1977).Google Scholar
12.Stopić, S., Ilić, I., Nedelijković, J., Rakočević, Z., Šušic, M., and Uskoković, D., in Spillover and Migration of Surface Species on Catalysts, Studies in Surface Science and Catalysis Vol. 112 (Elsevier Science B.V., Amsterdam, 1997) p. 103.Google Scholar
13.Lang, R.J., J. Acoust. Soc. Am. 34, 7 (1962).Google Scholar
14.Peskin, R.L. and Raco, R.J., J. Acoust. Soc. Am. 35, 1378 (1963).CrossRefGoogle Scholar
15.Jokanović, V., Janaćković, Dj., Spasie, A., and Uskoković, D., Mat. Trans., JIM 37, 627 (1996).Google Scholar
16.Uskoković, D., Mat. Sci. Forum 214, 276 (1996).CrossRefGoogle Scholar
17.Rakočević, Z., Strbac, S., Bibić, N., Peruško, D., and Nenadović, T., Thin Solid Films 257, 83 (1995).Google Scholar
18.Darrot, V., Troyon, M., Ebothe, J., Bissieux, C., and Nicollin, C., Thin Solid Films 265, 52 (1995).Google Scholar
19.Popov, K., Pavlovic, M., Rakočević, Z., and Škorić, D., J. Serb. Chem. Soc. 60, 873 (1995).Google Scholar