Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-28T11:22:21.307Z Has data issue: false hasContentIssue false

Infiltration of liquid water in an acid-leached zeolite

Published online by Cambridge University Press:  31 January 2011

Aijie Han
Affiliation:
Department of Structural Engineering, University of California—San Diego, La Jolla, California 92093-0085
Yu Qiao*
Affiliation:
Department of Structural Engineering, University of California—San Diego, La Jolla, California 92093-0085
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Through acid-leaching treatment, the degree of hydrophobicity of a zeolite β can be controlled in a broad range. As the treatment time increases, the nanopore surface can change from hydrophilic to hydrophobic, leading to the formation of an infiltration plateau in sorption isotherm curve. The infiltration pressure and hysteresis are dependent on the testing temperature. As temperature rises, the effective degree of hydrophobicity is lowered, while the defiltration is much more pronounced.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Simion, M., Kleps, I., Neghina, T., Angelescu, A., Miu, M., Bragaru, A., Danila, M., Condac, E., Costache, M.Savu, L.: Nanoporous silicon matrix used as biomaterial. J. Alloys Compd. 434, 830 2007CrossRefGoogle Scholar
2Dabrowski, A.: Adsorption—from theory to practice. Adv. Colloid Interface Sci. 93, 135 2001CrossRefGoogle ScholarPubMed
3Ritter, J.A.Ebner, A.D.: State-of-the-art adsorption and membrane separation processes for hydrogen production in the chemical and petrochemical industries. Sep. Sci. Technol. 42, 1123 2007CrossRefGoogle Scholar
4Punyamurtula, V.K.Qiao, Y.: Infiltration of pressurized promoter solutions in a mesoporous silica. Microporous Mesoporous Mater. 103, 35 2007CrossRefGoogle Scholar
5Han, A.Qiao, Y.: Suppression effect of liquid composition on defiltration of nanofluids in lyophobic environment. J. Phys. D: Appl. Phys. 40, 3436 2007CrossRefGoogle Scholar
6Kong, X.Qiao, Y.: An electrically controllable nanoporous smart system. J. Appl. Phys. 99, 064313 2006CrossRefGoogle Scholar
7Han, A.Qiao, Y.: Infiltration pressure of a nanoporous liquid spring modified by an electrolyte. J. Mater. Res. 22, 644 2007Google Scholar
8Borman, V.D., Crekhov, A.M.Troyan, V.I.: Investigation of the percolation transition in a nonwetting liquid-nanoporous medium system. J. Exp. Theor. Phys. 91, 170 2000CrossRefGoogle Scholar
9Reichman, S., Ulus, A.Peled, E.: PTFE-based solid polymer electrolyte membrane for high-temperature fuel-cell applications. J. Electrochem. Soc. 154, B327 2007CrossRefGoogle Scholar
10Holt, J.K., Park, H.G., Wang, Y.M., Stadermann, M., Artyukhin, A.B., Grigoropoulos, C.P., Noy, A.Bakajin, O.: Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312, 1034 2006CrossRefGoogle ScholarPubMed
11Eroshenko, V., Regis, R.C., Soulard, M.Patarin, J.: Energetics—A new field of application for hydrophobic zeolites. J. Am. Chem. Soc. 123, 8129 2001Google Scholar
12Martin, T., Lefevre, B., Brunel, D., Galarneau, A., di Renzo, F., Fajula, F., Gobin, P., Quinson, J.F.Vigier, G.: Dissipative water intrusion in hydrophobic MCM-41 type materials. Chem. Commun. 24 2002Google Scholar
13Surani, F.B.Qiao, Y.: Energy absorption of a polyacrylic acid partial sodium salt modified nanoporous system. J. Mater. Res. 21, 1327 2006Google Scholar
14Kong, X., Surani, F.B.Qiao, Y.: Effects of addition of ethanol on the infiltration pressure of a mesoporous silica. J. Mater. Res. 20, 1042 2005CrossRefGoogle Scholar
15Qiao, Y., Punyamurtula, V.K., Han, A., Kong, X.Surani, F.B.: Temperature dependence of working pressure of a nanoporous liquid spring. Appl. Phys. Lett. 89, 251905 2006Google Scholar
16Han, A.Qiao, Y.: Thermal effects on infiltration of a solubility sensitive volume memory liquid. Philos. Mag. Lett. 87, 25 2007Google Scholar
17Zdravkov, B.D., Cermak, J.J., Sefara, M.Janku, J.: Pore classification in the characterization of porous materials—A perspective. Cent. Euro. J. Chem. 5, 385 2007Google Scholar
18Jansen, J.C.Introduction to Zeolite Science and Practice Elsevier Science 1991Google Scholar
19Apelian, M.R., Fung, A.S.Kennedy, G.J.: Dealumination of zeolite β via dicarboxylic acid treatment. J. Phys. Chem. 100, 16577 1996Google Scholar
20Muller, M., Harvey, G.Prins, R.: Comparison of the dealumination of zeolites beta, mordenite, ZSM-5 and ferrierite by thermal treatment, leaching with oxalic acid and treatment with SiCl4 by 1H, 29Si and 27Al MAS NMR. Microporous Mesoporous Mater. 34, 135 2000CrossRefGoogle Scholar
21Roberge, D.M., Hausmann, H.Hölderich, W.F.: Dealumination of zeolite beta by acid leaching: A new insight with two-dimensional multi-quantum and cross polarization 27Al MAS NMR. Phys. Chem. Chem. Phys. 4, 3128 2002Google Scholar
22Camblor, M.A., Corma, A.Iborra, S.: Beta zeolite as a catalyst for the preparation of alkyl glucoside surfactants: The role of crystal size and hydrophobicity. J. Catal. 172, 76 1997Google Scholar
23Coutanceau, C., Da Silva, J.M.Alvarez, M.F.: Dealumination of zeolites. Part VII. Influence of the acid treatment of a HBEA zeolite on the framework composition and on the porosity. J. Chim. Phys. 94, 765 1997CrossRefGoogle Scholar
24Pehlivan, H., Ozmihcl, F.Tıhmınlıoglu, F.: Water and water vapor sorption studies in polypropylene–zeolite composites. J. Appl. Poly. Sci. 90, 3069 2003CrossRefGoogle Scholar
25Qiao, Y., Cao, G.Chen, X.: Effects of gas molecules on nanofluidic behaviors. J. Am. Chem. Soc. 129, 2355 2007CrossRefGoogle ScholarPubMed
26Han, A., Kong, X.Qiao, Y.: Pressure induced infiltration in nanopores. J. Appl. Phys. 100, 014308 2006CrossRefGoogle Scholar
27Stelzer, J., Paulus, M.Hunger, M.: Hydrophobic properties of all-silica zeolite beta. Microporous Mesoporous Mater. 22, 1 1998CrossRefGoogle Scholar
28Demontis, P., Stara, G.Suffritti, G.B.: Behavior of water in the hydrophobic zeolite silicalite at different temperatures. A molecular dynamics study. J. Phys. Chem. B 107, 4426 2003CrossRefGoogle Scholar