Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-24T17:36:32.620Z Has data issue: false hasContentIssue false

Indentation fracture of low-dielectric constant films: Part II. Indentation fracture mechanics model

Published online by Cambridge University Press:  31 January 2011

Dylan J. Morris
Affiliation:
Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8520
Robert F. Cook
Affiliation:
Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8520
Get access

Abstract

Part I [D.J. Morris and R.F. Cook, J. Mater. Res.23, 2429 (2008)] of this two-part work explored the instrumented indentation and fracture phenomena of compliant, low-dielectric constant (low-κ) films on silicon substrates. The effect of film thickness and probe acuity on the fracture response, as well as the apparent connection of this response to the perceived elastic modulus, were demonstrated. These results motivate the creation of a fracture model that incorporates all of these variables here in Part II. Indentation wedging is identified as the mechanism that drives radial fracture, and a correction is introduced that adjusts the wedging strength of the probe for the attenuating influence of the relatively stiff substrate. An estimate of the film fracture toughness can be made if there is an independent measurement of the film stress; if not, a critical film thickness for channel-cracking under the influence of film stress may be estimated.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Morris, D.J.Cook, R.F.: Indentation fracture of low-dielectric constant films: Part I. Experiments and observations. J. Mater. Res. 23(9), 2429 2008CrossRefGoogle Scholar
2Morris, D.J.Cook, R.F.: Radial fracture during indentation by acute probes: I. Description by an indentation wedging model. Int. J. Fract. 136, 237 2005CrossRefGoogle Scholar
3Lawn, B.R.: Fracture of Brittle Solids Cambridge University Press Cambridge, UK 1993CrossRefGoogle Scholar
4Anstis, G.R., Chantikul, P., Lawn, B.R.Marshall, D.B.: A critical evaluation of indentation techniques for measuring fracture toughness. I. Direct crack measurements. J. Am. Ceram. Soc. 64, 533 1981CrossRefGoogle Scholar
5Marsh, D.M.: Plastic flow and fracture of glass. Proc. R. Soc. London A 282 1965Google Scholar
6Arora, A., Marshall, D.B., Lawn, B.R.Swain, M.V.: Indentation deformation/fracture of normal and anomalous glasses. J. Non-Cryst. Solids 31, 415 1979CrossRefGoogle Scholar
7Cook, R.F.Pharr, G.M.: Direct observation and analysis of indentation cracking in glasses and ceramics. J. Am. Ceram. Soc. 73, 787 1990CrossRefGoogle Scholar
8Morris, D.J., Myers, S.B.Cook, R.F.: Sharp probes of varying acuity: Instrumented indentation and fracture behavior. J. Mater. Res. 19, 165 2004CrossRefGoogle Scholar
9Morris, D.J., Vodnick, A.M.Cook, R.F.: Radial fracture during indentation by acute probes: II, Experimental observations of cube-corner and vickers indentation. Int. J. Fract. 136, 265 2005CrossRefGoogle Scholar
10Pharr, G.M., Harding, D.S.Oliver, W.C.: Measurement of fracture toughness in thin films and small volumes using nanoindentation methods in Mechanical Properties and Deformation Behavior of Materials Having Ultra-Fine Microstructures,, edited by M. Nastasi, D.M. Parkin, and H. Gleiter (NATO ASI, Boston, MA,, 1993) p. 449CrossRefGoogle Scholar
11Morris, D.J.Cook, R.F.: In situ cube-corner indentation of soda-lime glass and fused silica. J. Am. Ceram. Soc. 87, 1494 2004CrossRefGoogle Scholar
12Tada, H., Paris, P.C.Irwin, G.R.: The Stress Analysis of Cracks Handbook ASME Press New York 2000CrossRefGoogle Scholar
13Gao, H., Chiu, C-H.Lee, J.: Elastic contact versus indentation modeling of multi-layered materials. Int. J. Solids Struct. 29, 2471 1992Google Scholar
14Xu, H.Pharr, G.M.: An improved relation for the effective elastic compliance of a film/substrate system during indentation by a flat cylindrical punch. Scr. Mater. 55, 315 2006CrossRefGoogle Scholar
15Mencik, J., Munz, D., Quandt, E., Weppelmann, E.R.Swain, M.V.: Determination of elastic modulus of thin layers using nanoindentation. J. Mater. Res. 12, 2475 1997CrossRefGoogle Scholar
16Song, H., Pharr, G.M.Rar, A.: Assessment of new relation for the elastic compliance of a film-substrate system in Thin Films: Stresses and Mechanical Properties I, edited by C.S. Ozkan, L.B. Freund, R.C. Cammarata, and H. Gao (Mater. Res. Soc. Symp. Proc. 695, Warrendale, PA, 2002), p. 431CrossRefGoogle Scholar
17Beuth, J.L.: Cracking of thin bonded films in residual tension. Int. J. Solids Struct. 29, 1657 1992CrossRefGoogle Scholar
18Zak, A.R.Williams, M.L.: Crack point singularities at a bi-material interface. J. Appl. Mech. 30, 142 1963CrossRefGoogle Scholar
19Hutchinson, J.W.Suo, Z.: Mixed mode cracking in layered materials. Adv. Appl. Mech. 29, 63 1992CrossRefGoogle Scholar
20Dundurs, J.: Discussion of edge-bonded dissimilar orthogonal elastic wedges under normal and shear loading. J. Appl. Mech. 36, 650 1969CrossRefGoogle Scholar
21Vlassak, J.J.: Channel cracking in thin films on substrates of finite thickness. Int. J. Fract. 120, 299 2003CrossRefGoogle Scholar
22Suga, T., Elssner, G.Schmauder, S.: Composite parameters and mechanical compatibility of material joints. J. Compos. Mater. 22, 917 1988CrossRefGoogle Scholar
23Lucas, B.N., Hay, J.C.Oliver, W.C.: Using multidimensional contact experiments to determine Poisson’s ratio. J. Mater. Res. 19, 58 2004CrossRefGoogle Scholar
24Lucas, B.N., Hay, J.C.Oliver, W.C.: Using multi-dimensional contact mechanics experiments to measure Poisson’s ratio of porous low-k films in Materials, Technology and Reliability for Advanced Interconnects and Low-k Dielectrics—2003, edited by A.J. McKerrow, J. Leu, O. Kraft, and T. Kikkawa (Mater. Res. Soc. Symp. Proc. 766, Warrendale, PA, 2003), p. 177CrossRefGoogle Scholar
25Evans, K.E.Alderson, A.: Auxetic materials: Functional materials and structures from lateral thinking! Adv. Mater. 12, 617 20003.0.CO;2-3>CrossRefGoogle Scholar
26Yang, W., Li, Z-M., Shi, W., Xie, B-H.Yang, M-B.: Review on auxetic materials. J. Mater. Sci. 39, 3269 2004CrossRefGoogle Scholar
27Alderson, A.Evans, K.E.: Molecular origin of auxetic behavior in tetrahedral framework silicates. Phys. Rev. Lett. 89, 2255031 2002CrossRefGoogle ScholarPubMed
28Ting, T.C.T.Chen, T.: Poisson’s ratio for anisotropic elastic materials can have no bounds. Q. J. Mech. Appl. Math. 58, 73 2005CrossRefGoogle Scholar
29Lakes, R.S.: Negative Poisson’s ratio materials. Science 238, 551 1987CrossRefGoogle ScholarPubMed
30Simmons, G.Wang, H.: Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook MIT Press Cambridge, MA 1971Google Scholar
31Tsui, T.Y., McKerrow, A.J.Vlassak, J.J.: Constraint effects on thin film channel cracking behavior. J. Mater. Res. 20, 2266 2005CrossRefGoogle Scholar
32Nakamura, T.Kamath, S.M.: Three-dimensional effects in thin film fracture mechanics. Mech. Mater. 13, 67 1992CrossRefGoogle Scholar
33Jacques, J.M., Tsui, T.Y., McKerrow, A.J.Kraft, R.: Environmental effects on crack characteristics for OSG materials in Thin Films—Stresses and Mechanical Properties XI, edited by T.E. Buchheit, A.M. Minor, R. Spolenak, and K. Takashima (Mater. Res. Soc. Symp. Proc. 875, Warrendale, PA, 2005). O10.6CrossRefGoogle Scholar
34Wiederhorn, S.M.: Fracture surface energy of glass. J. Am. Ceram. Soc. 52, 99 1969CrossRefGoogle Scholar
35Petrovic, J.J.: Review: Mechanical properties of ice and snow. J. Mater. Sci. 38, 1 2003CrossRefGoogle Scholar
36Quinn, G.D.Bradt, R.C.: On the Vickers indentation fracture toughness test. J. Am. Ceram. Soc. 90, 673 2007CrossRefGoogle Scholar
37Volinsky, A.A., Vella, J.B.Gerberich, W.W.: Fracture toughness, adhesion and mechanical properties of low-k dielectric thin films measured by nanoindentation. Thin Solid Films 429, 201 2003CrossRefGoogle Scholar
38Vella, J.B., Adhihetty, I.S., Junker, K.Volinsky, A.A.: Mechanical properties and fracture toughness of organo-silicate glass (OSG) low-k dielectric thin films for microelectronic applications. Int. J. Fract. 120, 487 2003CrossRefGoogle Scholar