Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-24T11:15:13.542Z Has data issue: false hasContentIssue false

In situ Transmission Electron Microscopy Ion Irradiation Studies at Orsay

Published online by Cambridge University Press:  01 July 2005

M-O. Ruault
Affiliation:
Centre de Spectrométrie Nucléaire et Spectrométrie de Masse, 91405 Orsay, Campus, France
F. Fortuna
Affiliation:
Centre de Spectrométrie Nucléaire et Spectrométrie de Masse, 91405 Orsay, Campus, France
H. Bernas
Affiliation:
Centre de Spectrométrie Nucléaire et Spectrométrie de Masse, 91405 Orsay, Campus, France
J. Chaumont
Affiliation:
Centre de Spectrométrie Nucléaire et Spectrométrie de Masse, 91405 Orsay, Campus, France
O. Kaïtasov
Affiliation:
Centre de Spectrométrie Nucléaire et Spectrométrie de Masse, 91405 Orsay, Campus, France
V.A. Borodin
Affiliation:
Russian Research Center Kurchatov Institute, 123 182 Moscow, Russia
Get access

Abstract

Crucial features of materials evolution due to ion beam irradiation are often revealed only through studies of process dynamics. We review some significant examples of such experiments performed over the last 25 years with the Orsay in situ facility: a transmission electron microscope setup (with temperature stages operating between 4 and 1000 K) on a medium energy (3–570 keV) ion beam line. New results on nanocavity evolution and metal silicide nanoprecipitates in Si are presented briefly.We show that CoSi2 nanoprecipitate growth is mainly due to the constant Co atom contribution from the ion beam, and CoSi2 platelet growth is the result of a three-dimensional to two-dimensional growth mode transition.

Type
Articles
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Ruault, M-O., Lerme, M., Jouffrey, B. and Chaumont, J.: Adaptation of an ion implanter on a 100 kV electron microscope for in situ irradiation experiments. J. Phys. E: Sci. Instrum. 11, 1125 (1978).CrossRefGoogle Scholar
2Chaumont, J., Lalu, F., Salomé, M., Lamoise, A.M. and Bernas, H.: A medium energy facility for variable temperature implantation and analysis. Nucl. Instrum. Methods 189, 193 (1981).CrossRefGoogle Scholar
3Salomé, M., Raynaud, B., Schack, M., Chaumont, J., Ruault, M-O. and Bernas, H.: A side-entry liquid He cooled stage for the Philips EM400 electron microscope. J. Phys. E: Sci. Instrum. 18, 331 (1985).CrossRefGoogle Scholar
4Ruault, M-O., Jouffrey, B., Chaumont, J. and Bernas, H. Transmissionelectron-microscopy study of implantation induced defects in gold, in Applications of Ion Beams to Metals, edited by Picraux, S.T., EerNisse, E.P., and Vook, F.L. (Plenum, New York, 1973), p. 459.Google Scholar
5Ruault, M-O., Bernas, H. and Chaumont, J.: Transmission-electron-microscopy study of damage by ion implantation in gold. Evidence for a spike threshold. Philos. Mag. 39, 757 (1979).CrossRefGoogle Scholar
6Robinson, T.M. and Jenkins, M.L.: Heavy-ion irradiation of nickel and nickel alloys. Philos. Mag. A 43, 999 (1981).CrossRefGoogle Scholar
7Doan, N.V.: Interstitial cluster motion in displacement cascades. J. Nucl. Mater. 283–287, 763 (2000).CrossRefGoogle Scholar
8Norris, D.I.R.: Characters of defect clusters in irradiated metals. Philos. Mag. 19, 527 (1969).CrossRefGoogle Scholar
9Fukushima, H., Jenkins, M.L. and Kirk, M.A.: On the determination of the nature of defect clusters produced by displacement cascades. I—A critique of the two-and-a-half dimensional technique as applied to small clusters in silver and copper. Philos. Mag. A 75, 1567 (1997).CrossRefGoogle Scholar
10 Clips of those observations from M-O. Ruault are available on the CSNSM web site: http://www-csnsm.in2p3.fr/groupes/physolid/index2.php?lang=fr&nav=ns.Google Scholar
11Ruault, M-O., Chaumont, J. and Bernas, H.: Transmission-electron-microscopy study of ion implantation induced Si amorphization. Nucl. Instrum. Methods 209/210, 351 (1983).CrossRefGoogle Scholar
12Moine, P., Rivière, J-P., Ruault, M-O., Chaumont, J., Pelton, A. and Sinclair, R.: In situ TEM study of martensitic NiTi amorphization by Ni ion implantation. Nucl. Instrum. Methods B 7/8, 20 (1985).CrossRefGoogle Scholar
13Nastasi, M., Williams, J.M., Kenik, E.A. and Mayer, J.W.: Temperature and irradiating species effects on the critical amorphization dose in NiAl3. Nucl. Instrum. Methods B 19/20, 543 (1987).CrossRefGoogle Scholar
14Bernas, H., Ruault, M-O. and Zheng, P. Multiple amorphous states in ion implanted semiconductors (Si and InP), in Crucial Issues in Semiconductor Materials and Processing Technologies, edited by Coffa, S., Priolo, F., Rimini, E., and Poate, J. (Kluwer Academic, The Netherlands, 1992), p. 459.CrossRefGoogle Scholar
15Traverse, A., Ruault, M-O., Mendoza-Zélis, L., Schack, M., Bernas, H. and Dumoulin, L. Transmission electron microscopy and resistivity measurements on Pd1-xSix alloys prepared by ion implantation, in Metastable Materials by Ion Implantation, edited by Picraux, S.T. and Choyke, W.J. (Elsevier, New York, 1982), p. 217.Google Scholar
16Ruault, M-O., Schack, M., Bernas, H. and Chevalier, J-P.: Observation of periodic stress produced by ion damage in thin films. Philos. Mag. A 58, 397 (1988).CrossRefGoogle Scholar
17Kelly, P.M., Blake, R.G. and Jostsons, A.: An interpretation of corduroy contrast in neutron irradiated zirconium. J. Nucl. Mater. 59, 307 (1976).CrossRefGoogle Scholar
18Alefeld, G. and Völkl, J.: Hydrogen in Metals—Topics in Applied Physics, Vol. 29–30 (Springer-Verlag, Berlin, Germany, 1978).Google Scholar
19Stritzker, B. and Luo, H.L.: Superconductivity in Pd–Si–H(D) alloys. Solid State Commun. 29, 811 (1979).CrossRefGoogle Scholar
20Lin, X.W., Ruault, M-O., Traverse, A., Chaumont, J. and Bernas, H.: Structural study of ordering low temperature implanted Ni and Pd hydrides. Phys. Rev. Lett. 56, 1835 (1986).CrossRefGoogle Scholar
21Lin, X.W., Ruault, M-O., Bernas, H. and Traverse, A.: Absence of phase separation in ion implanted hydrides. The case of NbH. J. Phys. F 17, 2179 (1987).CrossRefGoogle Scholar
22Lamoise, A.M., Chaumont, J., Meunier, F. and Bernas, H.: Superconducting properties of aluminum thin films after ion implantation at liquid helium temperture. J. Phys. Lett. 36 L271 (1975).CrossRefGoogle Scholar
23Köstler, H., Traverse, A., Nédellec, P., Dumoulin, L., Ruault, M-O., Schlapbach, L., Burger, J.P. and Bernas, H.: A new hydride prepared by ion implantation. J. Phys. Condens. Matter 3, 8767 (1991).CrossRefGoogle Scholar
24Schober, T.: Electron microscopy of hydride precipitates in Nb. Scripta Metall. 7, 1119 (1973).CrossRefGoogle Scholar
25Lin, X.W., Ruault, M-O., Traverse, A. and Bernas, H.: In situ electron microscopy study of implanted AlHx. J. Less Comm. Metals 130, 133 (1987).Google Scholar
26Lin, X.W., Ruault, M-O., Traverse, A. and Bernas, H.: Solubility limit of H in Ag-H system formed during low temperature H implantation. Philos. Mag. 58A, 409 (1988).CrossRefGoogle Scholar
27Traverse, A. and Bernas, H.: Ion implanted metal hydrides. J. Less-Common Met. 129, 1 (1987).CrossRefGoogle Scholar
28 See contributions to SF2M Conference, J. Phys IV, 12, (2002).Google Scholar
29Wong-Leung, J., Williams, J.S., Kinomura, A., Nakano, Y., Hayashi, Y. and Eaglesham, D.J.: Diffusion and transient trapping of metals in silicon. Phys. Rev. B 59, 7990 (1999).CrossRefGoogle Scholar
30Bruel, M.: Silicon on insulator material technology. Electron. Lett. 31, 1201 (1995).CrossRefGoogle Scholar
31Williams, J.S., Ridgway, M.C., Conway, M.J., Wong-Leung, J., Zhu, X.F., Petravic, M., Fortuna, F., Ruault, M-O., Bernas, H., Kinomura, A., Nakano, Y. and Hayashi, Y.: Interaction of defects and metals with nanocavities in silicon. Nucl. Instrum. Methods B 178, 33 (2001).CrossRefGoogle Scholar
32Williams, J.S., Zhu, X.F., Ridgway, M.C., Conway, M.J., Williams, B.C., Fortuna, F., Ruault, M-O. and Bernas, H.: Preferential amorphization and defect annihilation at nanocavities in silicon during ion irradiation. Appl. Phys. Lett. 77, 4286 (2000).CrossRefGoogle Scholar
33Zhu, X.F., Williams, J.S., Conway, M.J., Ridgway, M.C., Fortuna, F., Ruault, M-O. and Bernas, H.: Direct observation of irradiation-induced nanocavity shrinkage in Si. Appl. Phys. Lett. 79, 3416 (2001).CrossRefGoogle Scholar
34Ruault, M-O., Fortuna, F., Bernas, H., Ridgway, M.C. and Williams, J.S.: How nanocavities in amorphous Si shrink under ion beam irradiation: An in situ study. Appl. Phys. Lett. 81, 2617 (2002).CrossRefGoogle Scholar
35Ruault, M-O., Ridgway, M.C., Fortuna, F., Bernas, H. and Williams, J.S.: Shrinkage mechanism of nanocavities in amorphous Si under ion irradiation: An in situ study. Nucl. Inst. Methods B 206, 912 (2003).CrossRefGoogle Scholar
36Dubinko, V.I. and Lazarev, N.P.: Effect of the radiation-induced vacancy emission from voids on the void evolution. Nucl. Instrum. Methods B 228, 187 (2005).CrossRefGoogle Scholar
37Mantl, S.: Ion beam synthesis of silicides. Mater. Sci. Rep. 8, 1 (1992).CrossRefGoogle Scholar
38Bulle-Lieuwma, C.W.T. Transmission electron microscopy of epitaxial cobaltdisilicide/silicon. Ph.D. Thesis, Utrecht University, Eidhoven, The Netherlands (1991).Google Scholar
39Volkov, A.E., Ruault, M-O., Bernas, H. and Borodin, V.A.: Ion beam synthesis of CoSi2: Influence of surface kinetics on nucleation. Nucl. Instrum. Methods B 178, 327 (2001).CrossRefGoogle Scholar
40Borodin, V.A., Ruault, M-O., and Bernas, H.: Nucleation of CoSi2 nanoclusters in cobalt implanted silicon: Modeling versus in-situ TEM observations, presented at Spring EMRS Meeting, Strasbourg, France (2003, unpublished).Google Scholar
41Ruault, M-O., Heinig, K.H., Strobel, M., and Bernas, H.: CoSi2 formation by ion beam synthesis—In-beam observation versus modeling. Presented at Spring EMRS Meeting, Strasbourg, France (1999, unpublished).Google Scholar
42Bros, R., Carpena, J., Sere, V. and Beltritti, A.: Occurrence of Pu and fissiogenic REE in hydrothermal apatites from the fossile nuclear reactor 16 at Oklo (Gabon). Radiochim. Acta. 74, 277 (1996).CrossRefGoogle Scholar
43Weber, W.J., Ewing, R.C. and Meldrum, A.: The kinetics of alpha-decay-induced amorphization in zircon and apatite containing weapons-grade plutonium or other actinides. J. Nucl. Mater. 250, 147 (1997).CrossRefGoogle Scholar
44Soulet, S., Carpéna, J., Chaumont, J., Krupa, J-C. and Ruault, M-O.: Determination of the defect creation mechanism in the mono- silicated fluoroapatite. Disorder modeling under repository conditions. J. Nucl. Mater. 299, 227 (2001).CrossRefGoogle Scholar
45Soulet, S., Chaumont, J., Krupa, J-C., Carpéna, J. and Ruault, M-O.: Determination of the defect creation mechanism in fluoroapatite. J. Nucl. Mater. 289, 194 (2001).CrossRefGoogle Scholar
46Soulet, S., Carpena, J., Chaumont, J., Kaitasov, O., Ruault, M-O. and Krupa, J.C.: Simulation of the \alpha-annealing effect in apatitic structures by He-ion irradiation: Influence of the silicate/phosphate ratio and of the OH/F-substitution. Nucl. Instr. Meth. B, Phys. Res. 184, 383 (2001).CrossRefGoogle Scholar
47Sabathier, C.: Irradiation effect in perovskyte: Use of this matrix for actinide waste disposal, Ph.D. Thesis, University Paris-XI (July 2003).Google Scholar