Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-08T16:12:51.281Z Has data issue: false hasContentIssue false

In situ synthesis of lithium ferrite nanoparticle/polymer hybrid

Published online by Cambridge University Press:  03 March 2011

Koichiro Hayashi
Affiliation:
Division of Nanomaterials Science, EcoTopia Science Institute, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
Wataru Sakamoto
Affiliation:
Division of Nanomaterials Science, EcoTopia Science Institute, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
Toshinobu Yogo*
Affiliation:
Division of Nanomaterials Science, EcoTopia Science Institute, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Lithium ferrite particle/organic hybrid was synthesized in situ from iron–organic and lithium–organic compounds below 100 °C. Spinel ferrite particle/organic hybrid was synthesized by hydrolyzing a mixture of iron (III) 3-allylacetylacetonate (IAA) and lithium acrylate (LA). X-ray diffraction analysis revealed that the crystallinity of spinel particle was dependent on the polymerization treatment and the hydrolysis conditions. The saturation magnetization of hybrid increased with increasing methylhydrazine and water amount of hydrolysis. Nanocrystalline lithium ferrite particle about 5 nm was dispersed in the organic matrix. The hybrid showed neither remanence nor coercive force at room temperature. The magnetization versus field/temperature H/T curves from 100 to 300 K were superimposed on the same curve and satisfied the Langevin equation. The zero-field-cooled (ZFC) and field-cooled (FC) magnetization curve revealed that the blocking temperature was about 75 K. The remanent magnetization and coercive field of the hybrid were 8.9 A·m2/kg and 26.3 kA/m, respectively, at 10 K.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Gomez-Romero, C. and Sanchez, C.: Hybrid materials, functional applications. An introduction, in Functional Hybrid Materials, edited by Gomez-Romero, C. and Sanchez, C. (Wiley-VCH, Weinheim, Germany, 2004), p. 1.Google Scholar
2Hayter, J.B. and Pynn, R.: Structure factor of magnetically saturated ferrofluid. Phys. Rev. Lett. 49, 1103 (1982).CrossRefGoogle Scholar
3Shimizu, T. and Matsui, M.: New magnetic implant material for interstitial hyperthermia. Sci. Tech. Adv. Mater. 4, 469 (2003).CrossRefGoogle Scholar
4Olsson, M.B.E., Persson, B.R.B., Salford, L.G., and Schröder, U.: Ferromagnetic particles as contrast agent in T2 NMR imaging. Mag. Reson. Imaging 4, 437 (1986).CrossRefGoogle Scholar
5Lesilie-Pelecky, D.L. and Rieke, R.D.: Magnetic properties of nanostructured materials. Chem. Mater. 8, 1770 (1996).CrossRefGoogle Scholar
6White, G.O. and Patton, C.E.: Magnetic properties of lithium ferrite microwave materials. J. Magn. Magn. Mater. 9, 299 (1978).CrossRefGoogle Scholar
7Braun, P.B.: A superstructure in spinels. Nature 170, 1123 (1952).CrossRefGoogle Scholar
8Folex, V.J.: Influence of ionic order on the magnetocrystalline anisotropy and crystalline field parameters in lithium ferrite monocrystals. J. Appl. Phys. 31, 166S (1960).Google Scholar
9Watari, T., Mishima, K., Torikai, T., and Imaoka, Y.: Magnetic properties of lithium ferrite powders fabricated by a sol-gel method. J. Ceram. Soc. Jpn. 106, 634 (1998).CrossRefGoogle Scholar
10Sankaranarayanan, V.K., Prakash, O., Pant, R.P., and Islam, M.: Lithium ferrite nanoparticle for ferrofluid applications. J. Magn. Magn. Mater. 252, 7 (2002).CrossRefGoogle Scholar
11Verma, S., Karande, J., Patidar, A., and Joy, P.A.: Low-temperature synthesis of nanocrystalline powders of lithium ferrite by an autocombustion method using citric acid and glycine. Mater. Lett. 59, 2630 (2005).CrossRefGoogle Scholar
12Tabuchi, M., Ado, K., Sakabe, H., Masquelier, C., Kageyama, H., and Nakamura, O.: Preparation of AFeO2 (A = Li, Na) by hydrothermal method. Solid State Ionics 79, 220 (1995).CrossRefGoogle Scholar
13Yogo, T., Nakamura, T., Kikuta, K., Sakamoto, W., and Hirano, S.: Synthesis of α-Fe2O3 particle/oligomer hybrid material. J. Mater. Res. 11, 475 (1996).CrossRefGoogle Scholar
14Nakamura, S., Sakamoto, W., and Yogo, T.: In situ synthesis of nickel ferrite nanoparticle/organic hybrid. J. Mater. Res. 20, 1590 (2005).CrossRefGoogle Scholar
15Nakamura, S., Sakamoto, W., and Yogo, T.: In situ synthesis of nano-sized cobalt ferrite particle/organic hybrid. J. Mater. Res. 21, 1336 (2006).CrossRefGoogle Scholar
16Tayim, H.A. and Sabri, M.: Synthesis of some olefin-substituted metal acetylacetonates. Inorg. Nucl. Chem. Lett. 9, 753 (1973).CrossRefGoogle Scholar
17Cullity, B.D.: Elements of X-ray Diffraction 2nd ed. (Addison-Wesley, Reading. MA, 1978), p. 284.Google Scholar
18Tarte, P.: Chimie minerale-sur l’application de la spectrometrie infrarouge a letude des transformations order-desorder des spinelles LiAl5O8 et LiFe5O8. Compt. Rend. 254, 2008 (1962).Google Scholar
19Morgan, W.E., Van Wazer, J.R., and Stec, W.J.: Inner orbital photoelectron spectroscopy of the alkali metal halides, perchlorates, phosphates and pyrophosphate. J. Am. Chem. Soc. 95, 751 (1973).CrossRefGoogle Scholar
20 JCPDS No. 170114. International Center for Diffraction Data: Newton Square, PA, 1967.Google Scholar
21Chikazumi, S.: Physics of Ferromagnetism, 2nd ed. (Oxford Univ. Press, Oxford, UK, 1997), p. 110.CrossRefGoogle Scholar
22Verma, S. and Joy, P.A.: Magnetic properties of superparamagnetic lithium ferrite nanoparticles. J. Appl. Phys. 98, 124312 (2005).CrossRefGoogle Scholar
23Hernando, A.: Magnetic properties and spin disorder in nanocrystalline materials. J. Phys. Condens. Matter 11, 9455 (1999).CrossRefGoogle Scholar
24Morrish, A.H.: The Physical Principles of Magnetism (John Wiley & Sons, New York, 1965), p. 360.Google Scholar