Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T09:49:58.882Z Has data issue: false hasContentIssue false

In situ mass spectrometry during diamond chemical vapor deposition using a low pressure flat flame

Published online by Cambridge University Press:  31 January 2011

C. A. Wolden
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695–7919
R. F. Davis
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695–7919
Z. Sitar
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695–7919
J. T. Prater
Affiliation:
Army Research Office, Research Triangle Park, North Carolina 27709–2211
Get access

Abstract

A combination of experiments and detailed kinetic modeling was used to investigate diamond deposition chemistry in low pressure combustion synthesis. Microprobe sampling was employed to provide in situ, quantitative measurements of the stable gas-phase species impinging the growth surface. The reactant gas ratio was found to be the most critical experimental variable. A detailed kinetic model was developed for the stagnation flow system. Comparison of experimental measurements showed very good agreement with model predictions. The model was then used to predict the concentration of radical species and analyze the sensitivity of predictions to γH, the probability of atomic hydrogen recombination on the surface. It was shown that γH dramatically affects the distribution of radical species near the diamond surface. The analysis also indicates that atomic carbon may be an important gas-phase precursor in this system. Comparison of mole fraction measurements and observations of film morphology were used to draw conclusions on the growth mechanism.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Murayama, M., Kojima, S., and Uchida, K., J. Appl. Phys. 69, 7924 (1991).CrossRefGoogle Scholar
2.Hahn, D. W., Edwards, C. F., McCarty, K. F., and Kee, R. J., Appl. Phys. Lett. 68, 2158 (1996).CrossRefGoogle Scholar
3.Glumac, N. G. and Goodwin, D. G., Mater. Lett. 18, 119 (1993).CrossRefGoogle Scholar
4.Kim, J. S. and Cappelli, M. A., J. Mater. Res. 10, 149 (1995).CrossRefGoogle Scholar
5.Wolden, C. A., Sitar, Z., Davis, R. F., and Prater, J. T., Appl. Phys. Lett. 69, 2258 (1996).CrossRefGoogle Scholar
6.Wolden, C. A., Han, S. K., McClure, M. T., Sitar, Z., and Prater, J. T., Mater. Lett. 32, 9 (1997).CrossRefGoogle Scholar
7.Evans, G. H. and Grief, R., Numer. Heat Transfer 14, 373 (1988).CrossRefGoogle Scholar
8.Hsu, W. L., Appl. Phys. Lett. 59, 1427 (1991).CrossRefGoogle Scholar
9.Hsu, W. L., J. Appl. Phys. 72, 3102 (1992).CrossRefGoogle Scholar
10.Matsui, Y., Yukki, A., Sahara, M., and Hirose, Y., Jpn. J. Appl. Phys. 28, 1718 (1989).CrossRefGoogle Scholar
11.Cappelli, M. A. and Loh, M. H., Diamond Related Mater. 3, 417 (1994).CrossRefGoogle Scholar
12.Harris, S. J., Weiner, A. M., and Perry, T. A., Appl. Phys. Lett. 53, 1605 (1988).CrossRefGoogle Scholar
13.Harris, S. J. and Weiner, A. M., Appl. Phys. Lett. 55, 2179 (1989).CrossRefGoogle Scholar
14.Harris, S. J., Belton, D. N., Weiner, A. M., and Schmieg, S. J., J. Appl. Phys. 66, 5353 (1989).CrossRefGoogle Scholar
15.Harris, S. J. and Weiner, A. M., J. Appl. Phys. 67, 6520 (1990).CrossRefGoogle Scholar
16.Frenklach, M. and Spear, K., J. Mater. Res. 3, 133 (1988).CrossRefGoogle Scholar
17.Harris, S. J., Appl. Phys. Lett. 56, 2298 (1990).CrossRefGoogle Scholar
18.Frenklach, M. and Wang, H., Phys. Rev. B 43, 1520 (1991).CrossRefGoogle Scholar
19.Huang, D. and Frenklach, M., J. Phys. Chem. 96, 1868 (1992).CrossRefGoogle Scholar
20.Garrison, B. J., Dawnkaski, E. J., Srivasta, D., and Brenner, D. W., Science 255, 835 (1992).CrossRefGoogle Scholar
21.Harris, S. J. and Goodwin, D. G., J. Chem. Phys. 97, 23 (1993).CrossRefGoogle Scholar
22.Coltrin, M. E. and Dandy, D. S., J. Appl. Phys. 74, 5803 (1993).CrossRefGoogle Scholar
23.Skokov, S., Weiner, B., and Frenklach, M., J. Phys. Chem. 98, 7073 (1994).CrossRefGoogle Scholar
24.Frenklach, M., J. Appl. Phys. 65, 5142 (1989).CrossRefGoogle Scholar
25.Goodwin, D. G. and Gavillet, G. G., J. Appl. Phys. 68, 6393 (1990).CrossRefGoogle Scholar
26.Goodwin, D. G., Appl. Phys. Lett. 59, 277 (1991).CrossRefGoogle Scholar
27.Yu, B. W. and Girshick, S. L., J. Appl. Phys. 75, 3914 (1994).CrossRefGoogle Scholar
28.Dandy, D. S. and Coltrin, M. E., J. Appl. Phys. 76, 3102 (1994).CrossRefGoogle Scholar
29.McMaster, M. C., Hsu, W. L., Coltrin, M. E., and Dandy, D. S., J. Appl. Phys. 76, 7567 (1994).CrossRefGoogle Scholar
30.McMaster, M. C., Hsu, W. L., Coltrin, M. E., Dandy, D. S., and Fox, C., Diamond Rel. Mater. 4, 7567 (1994).Google Scholar
31.Kim, J. S. and Cappelli, M. A., J. Appl. Phys. 72, 5461 (1992).CrossRefGoogle Scholar
32.Meeks, E., Kee, R. J., Dandy, D. S., and Coltrin, M. E., Combust. Flame 92, 144 (1993).CrossRefGoogle Scholar
33.McNamara, K. M. and Gleason, K. K., J. Electrochem. Soc. 140, L22 (1993).CrossRefGoogle Scholar
34.Winters, H. F., Seki, H., Rye, R. R., and Coltrin, M. E., J. Appl. Phys. 76, 1228 (1994).CrossRefGoogle Scholar
35.Wolden, C. A. and Gleason, K. K., Appl. Phys. Lett. 62, 2329 (1993).CrossRefGoogle Scholar
36. For example, see Warnatz, J., in Combustion Chemistry, edited by Gardiner, W. C. (Springer-Verlag, Berlin, 1984), Chap. 5, p. 197.CrossRefGoogle Scholar
37.Miller, J. A. and Melius, C. F., Combust. Flame 91, 21 (1992).CrossRefGoogle Scholar
38.Bastin, E., Delfau, J-L., Reuillon, M., Vovelle, C., and Warnatz, J., Twenty-Second Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, PA, 1989), p. 313.Google Scholar
39.Glumac, N. G. and Goodwin, D. G., Combust. Flame 105, 321 (1996).CrossRefGoogle Scholar
40.Powling, J., Fuel 28, 26 (1949).Google Scholar
41.Hsu, W. L. and Tung, D. M., Rev. Sci. Instrum. 63, 4138 (1992).CrossRefGoogle Scholar
42.Spectra Instruments Users Manual, Morgan Hill, CA (1995).Google Scholar
43.Wolden, C. A., Davis, R. F., Sitar, Z., and Prater, J. T., Combust. Flame (1996).Google Scholar
44.von Karman, T., Z. Agnew. Math. Mech. 1, 233 (1921).CrossRefGoogle Scholar
45.Coltrin, M. E., Kee, R. J., Evans, G. H., Meeks, E., Rupley, F., and Grcar, J. F., SAND 91-8003, Sandia National Laboratories (1991).Google Scholar
46.Coltrin, M. E., Kee, R. J., and Evans, G. H., J. Electrochem. Soc. 136, 819 (1989).CrossRefGoogle Scholar
47.Kee, R. J., Rupley, F. M., and Miller, J. A., SAND 89-8009B, Sandia National Laboratories (1995).Google Scholar
48.Coltrin, M. E., Kee, R. J., and Rupley, F. M., SAND 90-8003C, Sandia National Laboratories (1994).Google Scholar
49.Butler, J. E. and Woodin, R. L., Trans. R. Soc. London, Ser. A 342, 209 (1993).Google Scholar
50.Goodwin, D. G., J. Appl. Phys. 74, 6895 (1993).CrossRefGoogle Scholar
51.Wolden, C. A., Mitra, S., and Gleason, K. K., J. Appl. Phys. 72, 3750 (1992).CrossRefGoogle Scholar
52.Tankala, K., Mecray, M., DebRoy, T., and Yarbrough, W. A., Appl. Phys. Lett. 60, 2068 (1992).Google Scholar
53.Gat, R. and Angus, J. C., J. Appl. Phys. 74, 5981 (1993).CrossRefGoogle Scholar
54.Harris, S. J. and Weiner, A. M., J. Appl. Phys. 74, 1022 (1993).CrossRefGoogle Scholar
55.Connel, L. L., Fleming, J. W., Chu, H-N., Vestyck, D. J., Jensen, E., and Butler, J. E., J. Appl. Phys. 78, 3622 (1995).CrossRefGoogle Scholar
56.Wolden, C. A., Ph.D. Thesis, Department of Chemical Engineering, Massachusetts Institute of Technology, Chap. 8 (1995).Google Scholar
57.Goodwin, D. G., J. Appl. Phys. 74, 6888 (1993).CrossRefGoogle Scholar
58.Frenklach, M., Clary, D. W., Gardiner, W. C., and Stein, S. E., Twentieth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, PA, 1985), p. 887.Google Scholar
59.Harris, S. J. and Weiner, A. M., Ann. Rev. Phys. Chem. 36, 31 (1985).CrossRefGoogle Scholar
60.Kondoh, E., Ohta, T., Mitomo, T., and Ohtsuka, K., Appl. Phys. Lett. 59, 488 (1991).CrossRefGoogle Scholar
61.Warnatz, J., Eighteenth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, PA, 1981), p. 369.Google Scholar