Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-05T12:47:04.412Z Has data issue: false hasContentIssue false

In situ characterization of fracture toughness and dynamics of nanocrystalline titanium nitride films

Published online by Cambridge University Press:  12 February 2016

Yang Hu
Affiliation:
Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
Jia-Hong Huang
Affiliation:
Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan
Jian-Min Zuo*
Affiliation:
Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We designed a clamped beam bending test using a nanoindentation holder with help of transmission electron microscopy (TEM) and focused ion beam specimen fabrication. The microstructure evolution and crack propagation in nanocrystalline TiN were studied by electron imaging and load–displacement measurements during mechanical loading. By measuring the loads under which the crack starts and stops propagating and the time, we obtained the film's fracture toughness using the finite element method and crack propagation speed. Among these, we identified three types of crack propagation pathways, namely bridging, intergranular and a mixed mode of transgranular and intergranular fracture, and the associated microstructure changes. The measured fracture toughness is in agreement with the reported values. Thus, our in situ TEM bending test provides the first direct measurement of fracture toughness in a TEM and a correlation of fracture toughness with fracture toughening mechanisms in nanocrystalline TiN. The method is general and can be applied to other nanocrystalline materials.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: George M. Pharr

References

REFERENCES

Meyers, M.A., Mishra, A., and Benson, D.J.: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51(4), 427 (2006).Google Scholar
Gleiter, H.: Nanocrystalline materials. Prog. Mater Sci. 33(4), 223 (1989).Google Scholar
Kumar, K.S., Van Swygenhoven, H., and Suresh, S.: Mechanical behavior of nanocrystalline metals and alloys. Acta Mater. 51(19), 5743 (2003).CrossRefGoogle Scholar
Schiotz, J., Di Tolla, F.D., and Jacobsen, K.W.: Softening of nanocrystalline metals at very small grain sizes. Nature 391(6667), 561 (1998).Google Scholar
Suryanarayana, C.: Nanocrystalline materials. Int. Mater. Rev. 40(2), 41 (1995).CrossRefGoogle Scholar
Chen, M.W., Ma, E., Hemker, K.J., Sheng, H.W., Wang, Y.M., and Cheng, X.M.: Deformation twinning in nanocrystalline aluminum. Science 300(5623), 1275 (2003).Google Scholar
Schiotz, J. and Jacobsen, K.W.: A maximum in the strength of nanocrystalline copper. Science 301(5638), 1357 (2003).CrossRefGoogle ScholarPubMed
Chen, I.W. and Wang, X.H.: Sintering dense nanocrystalline ceramics without final-stage grain growth. Nature 404(6774), 168 (2000).Google Scholar
Dao, M., Lu, L., Asaro, R.J., De Hosson, J.T.M., and Ma, E.: Toward a quantitative understanding of mechanical behavior of nanocrystalline metals. Acta Mater. 55(12), 4041 (2007).CrossRefGoogle Scholar
Tjong, S.C. and Chen, H.: Nanocrystalline materials and coatings. Mater. Sci. Eng., R 45(1–2), 1 (2004).Google Scholar
Bringa, E.M., Caro, A., Wang, Y.M., Victoria, M., McNaney, J.M., Remington, B.A., Smith, R.F., Torralva, B.R., and Van Swygenhoven, H.: Ultrahigh strength in nanocrystalline materials under shock loading. Science 309(5742), 1838 (2005).Google Scholar
Lu, L., Sui, M.L., and Lu, K.: Superplastic extensibility of nanocrystalline copper at room temperature. Science 287(5457), 1463 (2000).Google Scholar
Wang, Y., Chen, M., Zhou, F., and Ma, E.: High tensile ductility in a nanostructured metal. Nature 419(6910), 912 (2002).CrossRefGoogle Scholar
Shan, Z., Knapp, J.A., Follstaedt, D.M., Stach, E.A., Wiezorek, J.M.K., and Mao, S.X.: Inter- and intra-agglomerate fracture in nanocrystalline nickel. Phys. Rev. Lett. 100, 105502 (2008).Google Scholar
Farkas, D., Van Swygenhoven, H., and Derlet, P.M.: Intergranular fracture in nanocrystalline metals. Phys. Rev. B 66, 060101 (2002).Google Scholar
Hasnaoui, A., Van Swygenhoven, H., and Derlet, P.M.: Dimples on nanocrystalline fracture surfaces as evidence for shear plane formation. Science 300(5625), 1550 (2003).Google Scholar
Szlufarska, I., Nakano, A., and Vashishta, P.: A crossover in the mechanical response of nanocrystalline ceramics. Science 309(5736), 911 (2005).Google Scholar
Ovid'ko, I.A. and Sheinerman, A.G.: Special strain hardening mechanism and nanocrack generation in nanocrystalline materials. Appl. Phys. Lett. 90, 171927 (2007).CrossRefGoogle Scholar
Ovid'ko, I.A. and Sheinerman, A.G.: Nanocrack generation at dislocation-disclination configurations in nanocrystalline metals and ceramics. Phys. Rev. B 77, 054109 (2008).CrossRefGoogle Scholar
Ovid'ko, I.A., Sheinerman, A.G., and Aifantis, E.C.: Effect of cooperative grain boundary sliding and migration on crack growth in nanocrystalline solids. Acta Mater. 59(12), 5023 (2011).Google Scholar
Ovid'ko, I.A., Sheinerman, A.G., and Alfantis, E.C.: Stress-driven migration of grain boundaries and fracture processes in nanocrystalline ceramics and metals. Acta Mater. 56(12), 2718 (2008).Google Scholar
Pozdnyakov, V.A. and Glezer, A.M.: Structural mechanisms of plastic deformation in nanocrystalline materials. Phys. Solid State 44(4), 732 (2002).Google Scholar
Wei, G., Bhushan, B., and Jacobs, S.J.: Nanoscale fatigue and fracture toughness measurements of multilayered thin film structures for digital micromirror devices. J. Vac. Sci. Technol., A 22(4), 1397 (2004).Google Scholar
Gu, X.W., Wu, Z., Zhang, Y-W., Srolovitz, D.J., and Greer, J.R.: Microstructure versus flaw: Mechanisms of failure and strength in nanostructures. Nano Lett. 13(11), 5703 (2013).CrossRefGoogle ScholarPubMed
Kumar, S., Li, X., Haque, A., and Gao, H.: Is stress concentration relevant for nanocrystalline metals? Nano Lett. 11(6), 2510 (2011).CrossRefGoogle ScholarPubMed
Huang, J-H., Chen, Y-H., Wang, A-N., Yu, G-P., and Chen, H.: Evaluation of fracture toughness of ZrN hard coatings by internal energy induced cracking method. Surf. Coat. Technol. 258, 211 (2014).Google Scholar
Wang, A-N., Yu, G-P., and Huang, J-H.: Fracture toughness measurement on TiN hard coatings using internal energy induced cracking. Surf. Coat. Technol. 239, 20 (2014).CrossRefGoogle Scholar
Zhang, S., Sun, D., Fu, Y.Q., and Du, H.J.: Toughness measurement of thin films: A critical review. Surf. Coat. Technol. 198(1–3), 74 (2005).Google Scholar
Jaya, B.N., Jayaram, V., and Biswas, S.K.: A new method for fracture toughness determination of graded (Pt,Ni)Al bond coats by microbeam bend tests. Philos. Mag. 92(25–27), 3326 (2012).CrossRefGoogle Scholar
Liu, S., Wheeler, J.M., Howie, P.R., Zeng, X.T., Michler, J., and Clegg, W.J.: Measuring the fracture resistance of hard coatings. Appl. Phys. Lett. 102, 171907 (2013).Google Scholar
Matoy, K., Schonherr, H., Detzel, T., Schoberl, T., Pippan, R., Motz, C., and Dehm, G.: A comparative micro-cantilever study of the mechanical behavior of silicon based passivation films. Thin Solid Films 518(1), 247 (2009).Google Scholar
Mueller, M.G., Pejchal, V., Žagar, G., Singh, A., Cantoni, M., and Mortensen, A.: Fracture toughness testing of nanocrystalline alumina and fused quartz using chevron-notched microbeams. Acta Mater. 86, 385 (2015).CrossRefGoogle Scholar
Johansson, S., Schweitz, J.Å., Tenerz, L., and Tiren, J.: Fracture testing of silicon microelements in situ in a scanning electron microscope. J. Appl. Phys. 63(10), 4799 (1988).CrossRefGoogle Scholar
Yawny, A.A. and Perez Ipina, J.E.: In situ fracture toughness measurement using scanning electron microscopy. J. Test. Eval. 31(5), 413 (2003).Google Scholar
Zhang, X. and Zhang, S.: A Microbridge method in tensile testing of substrate for fracture toughness of thin films. Nanosci. Nanotechnol. Lett. 3(6), 735 (2011).Google Scholar
Chen, P. and Wu, W-Y.: The use of sputter deposited TiN thin film as a surface conducting layer on the counter electrode of flexible plastic dye-sensitized solar cells. Surf. Coat. Technol. 231, 140 (2013).Google Scholar
Wang, A-N., Chuang, C-P., Yu, G-P., and Huang, J-H.: Determination of average x-ray strain (AXS) on TiN hard coatings using cos2αsin2ψ x-ray diffraction method. Surf. Coat. Technol. 262, 40 (2015).Google Scholar
Ma, C.H., Huang, J.H., and Chen, H.: Nanohardness of nanocrystalline TiN thin films. Surf. Coat. Technol. 200(12–13), 3868 (2006).Google Scholar
Chan, S., Tuba, I., and Wilson, W.: On the finite element method in linear fracture mechanics. Eng. Fract. Mech. 2(1), 1 (1970).Google Scholar
Hertzberg, R.W., Vinci, R.P., and Hertzberg, J.L.: Deformation and Fracture Mechanics of Engineering Materials, 5th ed. (Wiley, New York, 2013).Google Scholar
Massl, S., Thomma, W., Keckes, J., and Pippan, R.: Investigation of fracture properties of magnetron-sputtered TiN films by means of a FIB-based cantilever bending technique. Acta Mater. 57(6), 1768 (2009).Google Scholar
Manoharan, M.P., Desai, A.V., and Haque, M.A.: Fracture toughness characterization of advanced coatings. J. Micromech. Microeng. 19(11), 115004 (2009).Google Scholar
Kataria, S., Srivastava, S.K., Kumar, P., Srinivas, G., Siju, J., Khan, J., Rao, D.V.S., and Barshilia, H.C.: Nanocrystalline TiN coatings with improved toughness deposited by pulsing the nitrogen flow rate. Surf. Coat. Technol. 206(19–20), 4279 (2012).CrossRefGoogle Scholar
Jaya, B.N. and Jayaram, V.: Crack stability in edge-notched clamped beam specimens: Modeling and experiments. Int. J Fract. 188(2), 213 (2014).Google Scholar
Kim, K.H., Xing, H., Zuo, J.M., Zhang, P., and Wang, H.: TEM based high resolution and low-dose scanning electron nanodiffraction technique for nanostructure imaging and analysis. Micron 71, 3945 (2015).CrossRefGoogle ScholarPubMed
Liao, X.Z., Zhou, F., Lavernia, E.J., Srinivasan, S.G., Baskes, M.I., He, D.W., and Zhu, Y.T.: Deformation mechanism in nanocrystalline Al: Partial dislocation slip. Appl. Phys. Lett. 83(4), 632 (2003).Google Scholar
Van Swygenhoven, H., Derlet, P.M., and Hasnaoui, A.: Atomic mechanism for dislocation emission from nanosized grain boundaries. Phys. Rev. B 66(2), 024101 (2002).Google Scholar
Van Swygenhoven, H. and Weertman, J.R.: Deformation in nanocrystalline metals. Mater. Today 9(5), 24 (2006).Google Scholar
Kumar, K.S., Suresh, S., Chisholm, M.F., Horton, J.A., and Wang, P.: Deformation of electrodeposited nanocrystalline nickel. Acta Mater. 51(2), 387 (2003).Google Scholar

Hu supplementary material S1

Supplementary Video

Download Hu supplementary material S1(Video)
Video 27.2 MB