Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T07:58:48.113Z Has data issue: false hasContentIssue false

Improving photovoltaic performance of benzothiadiazole-based small molecules: A synergistic effect of non-covalent interaction and aryl terminal group

Published online by Cambridge University Press:  21 September 2020

Qian Liu
Affiliation:
Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Recycling, School of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan411104, China
Jiyong Deng*
Affiliation:
Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Recycling, School of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan411104, China
Dong Yan
Affiliation:
Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Recycling, School of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan411104, China
Xianwei Huang
Affiliation:
Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Recycling, School of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan411104, China
Yunfeng Liao
Affiliation:
Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Recycling, School of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan411104, China
Qiang Tao*
Affiliation:
Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Recycling, School of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan411104, China
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

A–Ar–A-type small molecule (SM) of Py-2DTOBT and Py-2DTOBTPh with an Ar(A–D)2 framework were synthesized, in which 2,7-pyrene (Py) and alkoxyl-substituted benzothiadiazole (OBT) were, respectively, used as the central aryl (Ar) and arm acceptor (A), while 3-phenanthrene (Ph) was used as a terminal donor (D) in Py-2DTOBTPh. By comparison with the parent SM of Py-2DTBT, where 2,7-pyrene (Py) and benzothiadiazole (BT) were used as the central aryl (Ar) and arm acceptor (A), the effects of non-covalent interactions and the terminal group on optical, electrochemical, and photovoltaic properties were investigated. The gradually improved photovoltaic performances were observed among Py-2DTBT, Py-2DTOBT, and Py-2DTOBTPh based organic solar cells. A power conversion efficiency (PCE) of 2.83% was obtained in the Py-2DTOBTPh/PC71BM-based device, which is a 53% improvement related to that of Py-2DTOBT and three times enhanced related to that of Py-2DTBT(Py-2DTOBT:PCE of 1.86%, Py-2DTBT:PCE of 0.74%).

Type
Article
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Yuan, L., Lu, K., Xia, B.-Z., Zhang, J.-Q., Wang, Z., Wang, Z.-Y., Deng, D., Fang, J., Zhu, L.-Y., and We, Z.-X.: Acceptor end-capped oligomeric conjugated molecules with broadened absorption and enhanced extinction coefficients for high-efficiency organic solar cells. Adv. Mater. 28, 5980 (2016).CrossRefGoogle ScholarPubMed
Cnops, K., Rand, B.P., Cheyns, D., Verreet, B., Empl, M.A., and Heremans, P.: 8.4% efficient fullerene-free organic solar cells exploiting long-range exciton energy transfer. Nat. Commun. 5, 3406 (2014).CrossRefGoogle ScholarPubMed
Sun, K., Xiao, Z., Lu, S., Zajaczkowski, W., Pisula, W., Hanssen, E., White, J.M., Williamson, R.M., Subbiah, J., Ouyang, J., Holmes, A.B., Wong, W., and Jones, D.J.: A molecular nematic liquid crystalline material for high-performance organic photovoltaics. Nat. Commun. 6, 6013 (2015).CrossRefGoogle ScholarPubMed
Zhang, Q., Kan, B., Liu, F., Long, G., Wan, X., Chen, X., Zuo, Y., Ni, W., Zhang, H., Li, M., Hu, Z., Huang, F., Cao, Y., Liang, Z., Zhang, M., Russell, T.P., and Chen, Y.: Small-molecule solar cells with efficiency over 9%. Nat. Photon 9, 35 (2015).CrossRefGoogle Scholar
Kan, B., Li, M., Zhang, Q., Liu, F., Wan, X., Wang, Y., Ni, W., Long, G., Yang, X., Feng, H., Zuo, Y., Zhang, M., Huang, F., Cao, Y., Russell, T.P., and Chen, Y.: Small-molecule solar cells with efficiency over 9%. J. Am. Chem. Soc. 137, 3886 (2015).CrossRefGoogle Scholar
Deng, D., Zhang, Y., Zhang, J., Wang, Z., Zhu, L., Fang, J., Xia, B., Wang, Z., Lu, K., Ma, W., and Wei, Z.: Fluorination-enabled optimal morphology leads to over 11% efficiency for inverted small-molecule organic solar cells. Nat. Commun. 7, 13740 (2016).CrossRefGoogle ScholarPubMed
Zhang, S., Qin, Y., Zhu, J., and Hou, J.: Over 14% efficiency in polymer solar cells enabled by a chlorinated polymer donor. Adv. Mater. 20, 1800868 (2018).CrossRefGoogle Scholar
Bin, H., Yang, Y., Zhang, Z.-G., Ye, L., Ghasemi, M., Chen, S., Zhang, Y., Zhang, C., Sun, C., Xue, L., Yang, C., Ade, H., and Li, Y.: Over 14% efficiency in organic solar cells enabled by chlorinated nonfullerene small-molecule acceptors. J. Am. Chem. Soc. 139, 5085 (2017).CrossRefGoogle Scholar
Kan, B., Zhang, Q., Li, M., Wan, X., Ni, W., Long, G., Wang, Y., Yang, X., Feng, H., and Chen, Y.-S.: Solution-processed organic solar cells based on dialkylthiol-substituted benzodithiophene unit with efficiency near 10%. J. Am. Chem. Soc. 44, 15529 (2014).CrossRefGoogle Scholar
Tan, H., Long, Y., Zhang, J., Zhu, J., Yang, J., Yu, J., and Zhu, W.: Spirobifluorene-cored wide bandgap non-fullerene small molecular acceptor with 3D structure for organic solar cells. Dyes Pigm. 162, 797 (2019).CrossRefGoogle Scholar
Yu, J., Zhu, W., Tan, H., and Peng, Q.: A novel D2-A-D1-A-D2-type donor–acceptor conjugated small molecule based on a benzo[1,2-b:4,5-b′]dithiophene core for solution processed organic photovoltaic cells. Chem. Phys. Lett. 667, 254 (2017).CrossRefGoogle Scholar
Meng, L., Zhang, Y., Wan, X., Li, C., Zhang, X., Wang, Y., Ke, X., Xiao, Z., Ding, L., Xia, R., Yip, H.-L., Cao, Y., and Chen, Y.: Organic and solution-processed tandem solar cells with 17.3% efficiency. Science 361, 1094 (2018).Google ScholarPubMed
Fan, B., Zhang, D., Li, M., Zhong, W., Zeng, Z., Ying, L., Huang, F., and Cao, Y.: Achieving over 16% efficiency for single-junction organic solar cells. Sci. China Chem. 62, 746 (2019).Google Scholar
Yuan, J., Zhang, Y., Zhou, L., Zhang, G., Yip, H.-L., Lau, T.-K., Lu, X., Zhu, C., Peng, H., Johnson, P.A., Leclerc, M., Cao, Y., Ulanski, J., Li, Y.-F., and Zou, Y.-P.: Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 3, 1140 (2019).CrossRefGoogle Scholar
Lin, Y.-H., Darling, S.B., Nikiforov, M.P., Strzalka, J., and Verduzco, R.: Supramolecular conjugated block copolymers. Macromolecules 45, 6571 (2012).CrossRefGoogle Scholar
Osowska, K. and Miljanic, O.S.: Supramolecular organization of extended benzobisoxazole cruciforms. Chem. Commun. 46, 4276 (2010).CrossRefGoogle ScholarPubMed
Jackson, N.E., Savoie, B.M., Kohlstedt, K.L., Olvera de la Cruz, M., Schatz, G.C., Chen, L.-X., and Ratner, M.A.: Controlling conformations of conjugated polymers and small molecules: The role of nonbonding interactions. J. Am. Chem. Soc. 135, 10475 (2013).CrossRefGoogle ScholarPubMed
Conboy, G., Taylor, R.G.D., Findlay, N.J., Kanibolotsky, A.L., Inigo, A.R., Ghosh, S.S., Ebenhoch, B., Jagadamma, L.K., Thalluri, G.K.V.V., Sajjad, M.T., Samuel, I.D.W., and Skabara, P.J.: Novel 4,8-benzobisthiazole (BBT) copolymers and their application in OFET and OPV devices. J. Mater. Chem. C 5, 11927 (2017).CrossRefGoogle Scholar
Yu, S., Chen, Y., Yang, L., Ye, P., Wu, J., Yu, J., Zhang, S., Gao, Y., and Huang, H.: Significant enhancement of photovoltaic performance through introducing S/N conformational locks. J. Mater. Chem. A 5, 21674 (2017).CrossRefGoogle Scholar
Yu, J., Zheng, Y., and Huang, J.: Towards High performance organic photovoltaic cells: A review of recent development in organic photovoltaics. Polymers 6, 2473 (2014).CrossRefGoogle Scholar
Huang, H., Chen, Z., Ortiz, R.P., Newman, C., Usta, H., Lou, S., Youn, J., Noh, Y., Baeg, K., Chen, L.-X., Facchetti, A., and Marks, T.: Erratum: Combining electron-neutral building blocks with intramolecular ‘Conformational Locks’ affords stable, high-mobility P- and N-channel polymer semiconductors. J. Am. Chem. Soc. 134, 10966 (2012).CrossRefGoogle Scholar
Huang, H., Yang, L., Facchetti, A., and Marks, T.J.: Organic and polymeric semiconductors enhanced by noncovalent conformational locks. Chem. Rev. 117, 10291 (2017).CrossRefGoogle ScholarPubMed
Tao, Q., Xiao, M., Zhu, M., Shao, L., Sui, Z., Wang, P., Huang, G., Pei, Y., Zhu, W., and Huang, F.: Improving self-assembly behavior and photovoltaic performance of the indacenodithiophene-based small molecules via increasing dipole moment of the terminal group. Dyes Pigm. 144, 142 (2017).CrossRefGoogle Scholar
Duan, C., Alice, F., van Franeker, J.J., Willems, R.E.M., Wienk, M.M., and Janssen, R.A.J.: Wide-bandgap benzodithiophene-benzothiadiazole copolymers for highly efficient multi-junction polymer solar cells. Adv. Mater. 27, 4461 (2015).CrossRefGoogle Scholar
Jo, J.W., Jung, W., Jung, E.H., Ahn, H., Shin, T.J., and Jo, W.H.: Fluorination on both D and A units in D-A type conjugated copolymers based on difluorobithiophene and benzothiadiazole for highly efficient polymer solar cells. Energy Environ. Sci. 8, 2427 (2015).CrossRefGoogle Scholar
Chen, Z., Cai, P., Chen, J., Liu, X., Zhang, L., Lan, L., Peng, J., Ma, Y., and Cao, Y.: Low band-gap conjugated polymers with strong interchain aggregation and very high hole mobility towards highly efficient thick-film polymer solar cells. Adv. Mater. 26, 2586 (2014).CrossRefGoogle ScholarPubMed
Tao, Q., Yan, D., Liao, Y., Huang, X., Deng, J., and Yu, D.: Synthesis and photovoltaic performance of anthracene-based small molecules for solution-processed organic solar cells. ChemistrySelect 4, 752 (2019).CrossRefGoogle Scholar
Lee, W., Kim, G.H., Ko, S.J., Yum, S., Hwang, S., Cho, S., Shin, Y.H., Kim, J.Y., and Woo, H.Y.: Semicrystalline D-A copolymers with different chain curvature for applications in polymer optoelectronic devices. Macromolecules 47, 1604 (2014).CrossRefGoogle Scholar
Yum, S., An, T.K., Wang, X., Lee, W., Uddin, M.A., Kim, Y.J., Nguyen, T.L., Xu, S., Hwang, S., Park, C.E., and Woo, H.Y.: Benzotriazole-containing planar conjugated polymers with noncovalent conformational locks for thermally stable and efficient polymer field-effect transistors. Chem. Mater. 26, 2147 (2014).CrossRefGoogle Scholar
Lei, T., Xia, X., Wang, J.Y., Liu, C., and Pei, J.: ‘Conformation locked’ strong electron-deficient poly(p-phenylene vinylene) derivatives for ambient-stable n-type field-effect transistors: Synthesis, properties, and effects of fluorine substitution position. J. Am. Chem. Soc. 136, 2135 (2014).CrossRefGoogle Scholar
Mallet, C., Savitha, G., Allain, M., Kozmík, V., Svoboda, J., Frère, P., and Roncali, J.: Synthesis and electronic properties of D-A-D triads based on 3-alkoxy-4-cyanothiophene and benzothienothiophene blocks. J. Org. Chem. 77, 2041 (2012).CrossRefGoogle ScholarPubMed
Lee, W., Choi, H., Hwang, S., Kim, J.Y., and Woo, H.Y.: Efficient conventional- and inverted-type photovoltaic cells using a planar alternating polythiophene copolymer. Chemistry 18, 2551 (2012).CrossRefGoogle ScholarPubMed
Meille, S.V., Farina, A., Bezziccheri, F., and Gallazzi, M.C.: The influence of alkoxy side chains on the conformational flexibility of oligo- and polythiophenes. Adv. Mater. 6, 848 (1994).CrossRefGoogle Scholar
Guo, X., Quinn, J., Chen, Z., Usta, H., Zheng, Y., Xia, Y., Hennek, J.W., Ortiz, R.P., Marks, T.J., and Facchetti, A.: Dialkoxybithiazole: A new building block for head-to-head polymer semiconductors. J. Am. Chem. Soc. 135, 1986 (2013).CrossRefGoogle ScholarPubMed
Wang, Y., Parkin, S.R., Gierschner, J., and Watson, M.D.: Highly fluorinated benzobisbenzothiophenes. Org. Lett. 10, 3307 (2008).CrossRefGoogle ScholarPubMed
Nguyen, T.L., Choi, H., Ko, S.J., Uddin, M.A., Walker, B., Yum, S., Jeong, J.E., Yun, M.H., Shin, T.J., and Hwang, S.: Semi-crystalline photovoltaic polymers with efficiency exceeding 9% in a ~300 nm thick conventional single-cell device. Energy Environ. Sci. 7, 3040 (2014).CrossRefGoogle Scholar
Zhang, Y., Tan, H., Xiao, M., Bao, X., Tao, Q., Wang, Y., Liu, Y., Yang, R., and Zhu, W.: D–A–Ar-type small molecules with enlarged π-system of phenanthrene at terminal for high-performance solution processed organic solar cells. Org. Electron 15, 1173 (2014).CrossRefGoogle Scholar
Zhang, Y., Bao, X., Xiao, M., Tan, H., Tao, Q., Wang, Y., Liu, Y., Yang, R., and Zhu, W.: Significantly improved photovoltaic performance of the triangular-spiral TPA(DPP-PN)3 by appending planar phenanthrene units into the molecular terminals. J. Mater. Chem. A 3, 886 (2015).CrossRefGoogle Scholar
Zhang, Y., Xiao, M., Su, N., Zhong, J., Tan, H., Wang, Y., Liu, Y., Pei, Y., Yang, R., and Zhu, W.: Efficient strategies to improve photovoltaic performance of linear-shape molecules by introducing large planar aryls in molecular center and terminals. Org. Electron 17, 198 (2015).CrossRefGoogle Scholar
Lee, O.P., Yiu, A.T., Beaujuge, P.M., Woo, C.H., Holcombe, W.T., Millstone, J.E., Douglas, J.D., Chen, M.S., and Frechet, J.M.: Efficient small molecule bulk heterojunction solar cells with high fill factors via pyrene-directed molecular self-assembly. Adv. Mater. 23, 5359 (2011).CrossRefGoogle ScholarPubMed
Deng, J., Chen, J., Tao, Q., Yan, D., Fu, Y., and Tan, H.: Improved photovoltaic performance of 2,7-pyrene based small molecules via the use of 3-carbazole as terminal unit. Tetrahedron 74, 3989 (2018).CrossRefGoogle Scholar
Mi, D., Park, J.B., Xu, F., Kim, H.U., Kim, J.-H., and Hwang, D.-H.. Synthesis and Characterization of Phenanthrene-substituted Fullerene Derivatives as Electron Acceptors for P3HT-based Polymer Solar Cells. Bull. Korean Chem. Soc. 35, 1647 (2014).CrossRefGoogle Scholar
Chen, J., Xiao, M., Duan, L., Wang, Q., Tan, H., Su, N., Liu, Y., Yang, R., and Zhu, W.: Benzodi(pyridothiophene): A novel acceptor unit for application in A1–A–A1 type photovoltaic small molecules. Phys. Chem. Chem. Phys. 18, 1507 (2016).CrossRefGoogle ScholarPubMed
Zhou, P., Dang, D., Xiao, M., Wang, Q., Zhong, J., Tan, H., Pei, Y., Yang, R., and Zhu, W.: Improved photovoltaic performance of star-shaped molecules with a triphenylamine core by tuning the substituted position of the carbazolyl unit at the terminal. J. Mater. Chem. A 3, 10883 (2015).CrossRefGoogle Scholar
Chen, J., Duan, L., Xiao, M., Wang, Q., Liu, B., Xia, H., Yang, R., and Zhu, W.: Tuning the central fused ring and terminal units to improve the photovoltaic performance of Ar(A–D)2 type small molecules in solution-processed organic solar cells. J. Mater. Chem. A 4, 4952 (2016).CrossRefGoogle Scholar
Su, W., Xiao, M., Fan, Q., Zhong, J., Chen, J., Dang, D., Shi, J., Xiong, W., Duan, X., Tan, H., Liu, Y., and Zhu, W.: Significantly increasing open-circuit voltage of the benzo[1,2-b:4,5-b0]dithiophene-alt-5,8-dithienyl-quinoxaline copolymers based PSCs by appending dioctyloxy chains at 6,7-positions of quinoxaline. Org. Electron 17, 129 (2015).CrossRefGoogle Scholar
Lee, J., Kim, M., Kang, B., Jo, S.B., Kim, H.G., Shin, J., and Cho, K.: Side-chain engineering for fine-tuning of energy levels and nanoscale morphology in polymer solar cells. Adv. Energy Mater. 4, 1400087 (2014).CrossRefGoogle Scholar
Tao, Q., Liu, T., Duan, L., Cai, Y., Xiong, W., Wang, P., Tan, H., Lei, G., Pei, Y., Zhu, W., Yang, R., and Sun, Y.: Wide bandgap copolymers with vertical benzodithiophene dicarboxylate for high-performance polymer solar cells with an efficiency up to 7.49%. J. Mater. Chem. A 4, 18792 (2016).CrossRefGoogle Scholar
Yan, D., Liao, Y., Huang, X., Tao, Q., and Deng, J.: Synthesis and photoelectric performance of D–A–A’ type small molecule based on triphenylamine. Mater. Res. Express 5, 075101 (2018).CrossRefGoogle Scholar
Supplementary material: File

Liu et al. supplementary material

Liu et al. supplementary material

Download Liu et al. supplementary material(File)
File 4.1 MB