Hostname: page-component-5f745c7db-xx4dx Total loading time: 0 Render date: 2025-01-06T06:03:23.874Z Has data issue: true hasContentIssue false

Improvement of CuAlO2 thin film electrical conduction by the anisotropic conductivity

Published online by Cambridge University Press:  31 January 2011

Wei Lan
Affiliation:
Laboratory of Thin Film Materials, Beijing University of Technology, Beijing 100022, People’s Republic of China; and Department of Physics, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, People’s Republic of China
Ming Zhang*
Affiliation:
Laboratory of Thin Film Materials, Beijing University of Technology, Beijing 100022, People’s Republic of China
Guobo Dong
Affiliation:
Laboratory of Thin Film Materials, Beijing University of Technology, Beijing 100022, People’s Republic of China
Yinyue Wang
Affiliation:
Department of Physics, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, People’s Republic of China
Hui Yan
Affiliation:
Laboratory of Thin Film Materials, Beijing University of Technology, Beijing 100022, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

CuAlO2 thin films with (015) preferential orientation growth have been synthesized on quartz substrates using radio frequency (rf) magnetron sputtering at low temperature. Via the optimized postannealing condition (in N2 preserved ambient at 900 °C for 5 h), the preferential orientation of the films changes from (015) to (001) direction. The use of a higher conductivity at the ab plane of CuAlO2 compared with that along the c axis, reduces the resistivity of the film at room temperature to 37 Ω·cm from that of the as-deposited, 4.62 × 104 Ω·cm. The positive Hall coefficient (+183.6 cm3/C) and the large mobility (4.07 cm2/V·s) suggest that CuAlO2 thin films are p-type semiconductors with good conduction path. The temperature dependence of conductivity indicates that CuAlO2 thin films obey a thermal-activation theory when the temperature is above 190 K, but below 185 K a two-dimension variable-range hopping mechanism becomes dominant.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Drevillon, B., Kumar, S., Cabarrocas, P.R.Siefert, J.M.: In situ investigation of the optoelectronic properties of transparent conducting oxide/amorphous silicon interfaces. Appl. Phys. Lett. 54, 2088 1989CrossRefGoogle Scholar
2Emziane, M., Durose, K., Halliday, D.P., Bosio, A.Romeo, N.: Role of substrate and transparent conducting oxide in impurity evolvement in polycrystalline thin-film devices. Appl. Phys. Lett. 87, 251913 2005CrossRefGoogle Scholar
3Yang, Y., Wang, L., Yan, H., Jin, S., Marks, T.J.Li, S-Y.: Highly transparent and conductive double-layer oxide thin films as anodes for organic light-emitting diodes. Appl. Phys. Lett. 89, 051116 2006Google Scholar
4Kawazoe, H., Yasukawa, M., Hyodo, H., Kurita, M., Yanagi, H.Hosono, H.: P-type electrical conduction in transparent thin films of CuAlO2. Nature 389, 939 1997CrossRefGoogle Scholar
5Kawazoe, H., Yanagi, H., Ueda, K.Hosono, H.: Transparent p-type conducting oxides: Design and fabrication of p–n heterojunctions. MRS Bull. 8, 28 2000CrossRefGoogle Scholar
6Ishiguro, T., Kitazawa, A., Mizutani, N.Kato, M.: Single-crystal growth and crystal structure refinement of CuAlO2. J. Solid State Chem. 40, 170 1981Google Scholar
7Buljan, A., Alemany, P.Ruiz, E.: Electronic structure and bonding in CuMO2 (M = Al, Ga, Y) delafossite-type oxides: An ab initio study. J. Phys. Chem. B 103, 8060 1999CrossRefGoogle Scholar
8Lee, M.S., Kim, T.Y.Kim, D.: Anisotropic electrical conductivity of delafossite-type CuAlO2 laminar crystal. Appl. Phys. Lett. 79, 2028 2001CrossRefGoogle Scholar
9Lan, W., Zhang, M., Dong, G.B., Dong, P.M., Wang, Y.Y.Yan, H.: The effect of oxygen on the properties of transparent conducting Cu–Al–O thin films deposited by rf magnetron sputtering. Mater. Sci. Eng., B 139, 155 2007Google Scholar
10Lambert, E.: CuAl2O4/copper aluminum oxide (Mineralogical-Petrograph. Institute, Universitat Heidelberg, Germany, ICDD Grant-in-Aid, 1980)Google Scholar
11Tunell, G., Posnjak, E.Ksanda, C.J.: CuO/copper oxide. Z. Kristllogr., Kristallgeom., Kristallphys., Kristallchem. 90, 120 (1935) calculated from ICSD using POWD-12++, 1997Google Scholar
12Jacob, K.T.Alcock, C.B.: Thermodynamics of CuAlO2 and CuAl2O4 and phase equilibria in the system Cu2O–CuO–Al2O3. J. Am. Ceram. Soc. 58, 192 1975CrossRefGoogle Scholar
13Ishiguro, T., Ishizawa, N., Mizutani, N.Kato, M.: CuAlO2/copper aluminum oxide. Acta Crystallogr., Sect. B: Struct. Sci. 39, 564 (1983) calculated from ICSD using POWD-12++, 1997Google Scholar
14Kato, K., Tanaka, K., Suzuki, K., Kimura, T., Nishizawa, K.Miki, T.: Impact of oxygen ambient on ferroelectric properties of polar-axis-oriented CaBi4Ti4O15 films. Appl. Phys. Lett. 86, 112901 2005CrossRefGoogle Scholar
15Lan, W., Liu, X.Q., Huang, C.M., Tang, G.M., Yang, Y.Wang, Y.Y.: Structural properties of ZnO:In thin films prepared by sol-gel spin-coating technique. Acta Phys. Sin. 55, 748 2006Google Scholar
16Li, J., Sleight, A.W., Jones, C.Y.Toby, B.H.: Trends in negative thermal expansion behavior for AMO2 (A = Cu or Ag; M = Al, Sc, In, or La) compounds with the delafossite structure. J. Solid State Chem. 178, 285 2005CrossRefGoogle Scholar
17Yanagi, H., Inoue, S., Ueda, K., Kawazoe, H., Hosono, H.Hamada, N.: Electronic structure and optoelectronic properties of transparent p-type conducting CuAlO2. J. Appl. Phys. 88, 4159 2000CrossRefGoogle Scholar
18Gong, H., Wang, Y.Luo, Y.: Nanocrystalline p-type transparent Cu–Al–O semiconductor prepared by chemical-vapor deposition with Cu(acac)2 and Al(acac)3 precursors. Appl. Phys. Lett. 76, 3959 2000CrossRefGoogle Scholar
19Mott, S.N.: Conduction in Non-crystalline Materials Oxford Univ. Press New York 1987 173Google Scholar
20Tsuda, N., Nasu, K., Yanase, A.Siratori, K.: Electronic Conduction in Oxides Springer Berlin 1991 105CrossRefGoogle Scholar