Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T21:58:44.731Z Has data issue: false hasContentIssue false

Improvement in thermoelectric properties of (ZnO)5In2O3 through partial substitution of yttrium for indium

Published online by Cambridge University Press:  31 January 2011

Masaki Kazeoka
Affiliation:
Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464–01, Japan
Hidenori Hiramatsu
Affiliation:
Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464–01, Japan
Won-Seon Seo
Affiliation:
Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464–01, Japan
Kunihito Koumoto
Affiliation:
Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464–01, Japan
Get access

Abstract

We first measured the thermoelectric properties of layer-structured homologous compounds, (ZnO)mIn2O3 (m = integer), and reported that they would becomecandidate materials for high-temperature thermoelectric energy conversion.1–4 We further tried to improve their thermoelectric properties by partially substituting yttrium for indium in (ZnO)5In2O3. Though the ionic radius of Y3+ is larger than that of In3+, the a-axis (hexagonal system) elongated and c-axis shrank as Y was substituted for In. The thermoelectric properties were found to vary with a varying amount of Y substitution; 3% Y substitution gave rise to the largest thermoelectric figure of merit, i.e., 1.1 - 1.3 × 10-4 K-1 at 960–1100 K. The abnormal change in the lattice structure by Y substitution was responsible for the unusual behavior of the thermoelectric properties.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ohta, H., Seo, W. S., and Koumoto, K., J. Am. Ceram. Soc. 79 (8), 2193 (1996).CrossRefGoogle Scholar
2.Koumoto, K., Ohta, H., and Seo, W. S., Proc. 15th Int. Conf. Thermoelec., IEEE, Pasadena, CA (1996), pp. 172175.Google Scholar
3.Koumoto, K., Seo, W. S., Hiramatsu, H., and Kazeoka, M., New Ceram. 9 (12), 31 (1996).Google Scholar
4.Hiramatsu, H., Ohta, H., Seo, W. S., and Koumoto, K., J. Jpn. Soc. Powd. Powd. Metall. 44 (1), 44 (1997).CrossRefGoogle Scholar
5.Hultgren, E., Orr, R. L., Anderson, P. D., and Kelly, K. K., in Selected Values of Thermodynamic Properties of Metals and Alloys (Wiley, New York, 1963).Google Scholar
6.Abvikosov, N. Kh. and Bankina, V., Zh. Neorg. Khim. 3 (3), 659 (1958).Google Scholar
7.Gather, B. and Blachnik, R., Z. Metall. 65 (10), 653 (1974).Google Scholar
8.Rosi, F. D., in Modern Perspectives on Thermoelectrics and Related Materials, edited by Allred, D. D., Vining, C. B., and Slack, G. A. (Mater. Res. Soc. Symp. Proc. 234, Pittsburgh, PA, 1991), p. 3.Google Scholar
9.Tokiai, T., Uesugi, T., and Koumoto, K., J. Am. Ceram. Soc. 78, 1089 (1995).CrossRefGoogle Scholar
10.Tsubota, T., Ohtaki, M., Eguchi, K., and Arai, H., J. Mater. Chem. 6, 1 (1996).Google Scholar
11.Ohtaki, M., Tsubota, T., Eguchi, K., and Arai, H., J. Appl. Phys. 79 (3), 1816 (1996).CrossRefGoogle Scholar
12.Ohtaki, M., Ogura, D., Eguchi, K., and Arai, H., J. Mater. Chem. 4, 653 (1994).CrossRefGoogle Scholar
13.Ohtaki, M., Koga, H., Tokunaga, T., Eguchi, K., and Arai, H., J. Solid State Chem. 120, 105 (1995).CrossRefGoogle Scholar
14.Shannon, R. D., Gilson, J. L., and Bouchard, R. J., J. Phys. Chem. Solids 38, 877 (1977).CrossRefGoogle Scholar
15.Yasukawa, M. and Murayama, N., J. Jpn. Soc. Powd. Powd. Metall. 44 (1), 50 (1997).CrossRefGoogle Scholar
16.Kaibe, H. T., Sakata, M., and Nishida, I. A., Proc. 12th Int. Conf. Thermoelec., IEE Yokohama, Japan (1993), pp. 212217.Google Scholar
17.Rowe, D. M. and Bhandari, C. M., Proc. 6th Int. Conf. Thermoelec., edited by K. R., Rao, Arlington, TX (1986), pp. 4354.Google Scholar
18.Kasper, H., Z. Anorg. Allg. Chem. 349, 113 (1967).CrossRefGoogle Scholar
19.Cannard, P. J. and Tilley, R. J. D., J. Solid State Chem. 73, 418 (1988).CrossRefGoogle Scholar
20.Nakamura, M., Kimizuka, N., and Mohri, T., J. Solid State Chem. 86, 16 (1990).CrossRefGoogle Scholar
21.Isobe, M., Kimizuka, N., Nakamura, M., and Mohri, T., Acta Crystallogr. C50, 332 (1994).Google Scholar
22.Shannon, R. D., Acta Crystallogr. A32, 751 (1976).CrossRefGoogle Scholar