Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-10T13:56:38.476Z Has data issue: false hasContentIssue false

Improved densification by nano-sized sintering aids for Si3N4

Published online by Cambridge University Press:  31 January 2011

Liwu Wang*
Affiliation:
Max-Planck-Institut für Metallforschung and Institut für Nichtmetallische Anorganische Materialien, Universität Stuttgart, Pulvermetallurgisches Laboratorium, Heisenbergstr. 5, 70569 Stuttgart, Germany
Wolfgang M. Sigmund
Affiliation:
Max-Planck-Institut für Metallforschung and Institut für Nichtmetallische Anorganische Materialien, Universität Stuttgart, Pulvermetallurgisches Laboratorium, Heisenbergstr. 5, 70569 Stuttgart, Germany
Sukumar Roy
Affiliation:
Max-Planck-Institut für Metallforschung and Institut für Nichtmetallische Anorganische Materialien, Universität Stuttgart, Pulvermetallurgisches Laboratorium, Heisenbergstr. 5, 70569 Stuttgart, Germany
Fritz Aldinger
Affiliation:
Max-Planck-Institut für Metallforschung and Institut für Nichtmetallische Anorganische Materialien, Universität Stuttgart, Pulvermetallurgisches Laboratorium, Heisenbergstr. 5, 70569 Stuttgart, Germany
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The densification of Si3N4 with nano-sized sintering aids that were in situ incorporated by a combustion process was studied in comparison with that of sintering aids mixed by ball milling. The combustion process directly produces amorphous and nano-sized Y–Al oxides within the Si3N4 powder. X-ray diffraction results indicate that amorphous Y–Al oxides begin to crystallize into Y3Al5O12 at about 600 °C. Additionally the nano-sized sintering aids are more homogeneously distributed and thereby promote the formation of eutectic melts at lower temperatures during liquid-phase sintering. Therefore, the densification process of Si3N4 during liquid-phase sintering is strongly accelerated. The microstructure of as-sintered parts from combusted powder seems more dense and homogeneous.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Lange, F.F., in Nitrogen Ceramics, edited by Riley, F.L. (Nordhoff, Netherlands, 1977), p. 491.CrossRefGoogle Scholar
2.Ziegler, G., Heinrich, J., and Wötting, G., J. Mater. Sci. 22, 3041 (1987).CrossRefGoogle Scholar
3.Ryn, K.H. and Yang, J-M., J. Mater. Res. 13, 2580 (1998).Google Scholar
4.Kim, J. and Iseki, T., J. Am. Ceram. Soc. 79, 2744 (1996).CrossRefGoogle Scholar
5.Kulig, M., Oroschin, W., and Greil, P., J. Eur. Ceram. Soc. 5, 209 (1989).CrossRefGoogle Scholar
6.Wang, C. and Riley, F.L., J. Eur. Ceram. Soc. 10, 83 (1992).CrossRefGoogle Scholar
7.Luther, E.P., Lange, F.F., and Pearson, D.S., J. Am. Ceram. Soc. 78, 2009 (1995).CrossRefGoogle Scholar
8.Han, K.R., Lim, C.S., Hong, M.J., Choi, S.K., and Kwon, S.H., J. Am. Ceram. Soc. 79, 574 (1996).CrossRefGoogle Scholar
9.Kim, J.K., Iseki, T.I., and Yano, T., J. Ceram. Soc. Jpn. 105, 147 (1997).CrossRefGoogle Scholar
10.Wang, L.W., Roy, S., Sigmund, W.M., and Aldinger, F., J. Eur. Ceram. Soc. 19, 61 (1999).CrossRefGoogle Scholar
11.Roy, S., Sigmund, W., and Aldinger, F., J. Mater. Sci. Lett. 16, 1148 (1997).Google Scholar
12.Roy, S., Wang, L.W., Sigmund, W., and Aldinger, F., Mater. Lett. 39, 138 (1999).CrossRefGoogle Scholar
13.Bowen, C.R. and Derby, B., Br. Ceram. Trans. 96, 25 (1997).Google Scholar
14.Abell, J.S., Harris, I.R., Cockayne, B., and Lent, B., J. Mater. Sci. 9, 527 (1974).CrossRefGoogle Scholar
15.Yamaguchi, O., Takeoka, K., and Hayashida, A., J. Mater. Sci. Lett. 10, 101 (1990).CrossRefGoogle Scholar
16.Kingery, W.D., J. Appl. Phys. 30, 301 (1959).CrossRefGoogle Scholar
17.Hirosaki, N., Okada, A., and Mitomo, M., J. Mater, Sci. 25, 1872 (1990).CrossRefGoogle Scholar
18.Suzuki, K. and Kanno, Y., J. Ceram. Soc. Jpn. 92, 101 (1984).Google Scholar
19.Goto, Y. and Thomas, G., J. Mater. Sci. 30, 2194 (1995).CrossRefGoogle Scholar
20.Kim, J., Schubert, H., and Petzow, G., J. Eur. Ceram. Soc. 5, 311 (1989).CrossRefGoogle Scholar
21.Boberski, C., Bestgen, H., and Hamminger, R., J. Mater. Sci. 9, 95 (1992).Google Scholar
22.Jack, K.H., Met. Technol. 9, 297 (1982).CrossRefGoogle Scholar
23.Kuzjukevics, A. and Ishizaki, K., J. Am. Ceram. Soc. 76, 2373 (1993).CrossRefGoogle Scholar