Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-24T11:41:04.842Z Has data issue: false hasContentIssue false

Improved dehydrogenation of TiF3-doped NaAlH4 using ordered mesoporous SiO2 as a codopant

Published online by Cambridge University Press:  31 January 2011

Shiyou Zheng
Affiliation:
Department of Materials Science, Fudan University, Shanghai 200433, People's Republic of China; and Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
Dalin Sun*
Affiliation:
Department of Materials Science, Fudan University, Shanghai 200433, People's Republic of China
Min Zhu*
Affiliation:
School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected]
b)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

A study of the influence of mesoporous SiO2 on the dehydrogenation of NaAlH4 and TiF3-doped NaAlH4 revealed that the amount of hydrogen evolved is 3.8 wt% for the pristine NaAlH4 and around 4.2 wt% for the TiF3-doped NaAlH4, but increases to 4.9–5.0 wt% once the samples are doped with mesoporous SiO2 in the temperature range of 100–350 °C. A favorable synergistic effect on the NaAlH4 dehydrogenation is achieved as mesoporous SiO2 is added as a codopant along with TiF3, which is associated with the nanosized pores and high specific surface area of mesoporous SiO2. The catalytic mechanism of mesoporous SiO2 is more physical than chemical relative to the catalytic mechanism of TiF3.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Schlapbach, L., Züttel, A.Hydrogen-storage materials for mobile applications. Nature 414, 353 (2001)CrossRefGoogle ScholarPubMed
2.Grochala, W., Edwards, P.P.Thermal decomposition of non-interstitial hydrides for storage and production of hydrogen. Chem. Rev. 104, 1283 (2004)CrossRefGoogle ScholarPubMed
3.Orimo, S., Nakamori, Y., Eliseo, J.R., Züttel, A., Jensen, C.M.Complex hydrides for hydrogen storage. Chem. Rev. 107, 4111 (2007)CrossRefGoogle ScholarPubMed
4.Eigen, N., Keller, C., Dornheim, M., Klassen, T., Bormann, R.Industrial production of light metal hydrides for hydrogen storage. Scr. Mater. 56, 847 (2007)CrossRefGoogle Scholar
5.Bogdanović, B., Schwickardi, M.Ti-doped alkali metal aluminum hydrides as potential novel reversible hydrogen storage material. J. Alloys Compd. 1, 253 (1997)Google Scholar
6.Anton, D.L.Hydrogen desorption kinetics in transition metal modified NaAlH4. J. Alloys Compd. 356–357, 400 (2003)CrossRefGoogle Scholar
7.Gross, K.J., Guthrie, S., Takala, S., Thomas, G.In-situ x-ray diffraction study of the decomposition of NaAlH4. J. Alloys Compd. 297, 270 (2000)CrossRefGoogle Scholar
8.Chaudhuri, S., Graetz, J., Ignatov, A., Reilly, J.J., Muckerman, J.T.Understanding the role of Ti in reversible hydrogen storage as sodium alanate: A combined experimental and density functional theoretical approach. J. Am. Chem. Soc. 128, 11404 (2006)CrossRefGoogle ScholarPubMed
9.Bogdanović, B., Felderhoff, M., Kaskel, S., Pommerin, A., Schlichte, K., Schüth, F.Improvement hydrogen storage properties of Ti-doped sodium alanate using titanium nanoparticles as doping agents. Adv. Mater. 15, 1012 (2003)CrossRefGoogle Scholar
10.Bogdanović, B., Brand, R.A., Marjanovic, A., Schwickardi, M., Tolle, J.Metal-doped sodium aluminium hydrides as potential new hydrogen-storage materials. J. Alloys Compd. 302, 36 (2000)CrossRefGoogle Scholar
11.Sun, D., Srinivasan, S.S., Chen, G., Jensen, C.M.Rehydrogenation and cycling studies of dehydrogenated NaAlH4. J. Alloys Compd. 373, 265 (2004)CrossRefGoogle Scholar
12.Bogdanović, B., Felderhoff, M., Pommerin, A., Schüth, F.Advanced hydrogen-storage materials based on Sc-, Ce-, and Pr-doped NaAlH4. Adv. Mater. 18, 1198 (2006)CrossRefGoogle Scholar
13.Singh, S., Eijt, S.W.H., Huot, J., Kockelmann, W.A., Wagemaker, M., Mulder, F.M.The TiCl3 catalyst in NaAlH4 for hydrogen storage induces grain refinement and impacts on hydrogen vacancy formation. Acta Mater. 55, 5549 (2007)CrossRefGoogle Scholar
14.Thomas, G.J., Gross, K.J., Yang, N.Y.C., Jensen, C.M.Microstructural characterization of catalyzed NaAlH4. J. Alloys Compd. 330–332, 702 (2002)CrossRefGoogle Scholar
15.Chaudhuri, S., Muckerman, J.T.First-principles study of Ti-catalyzed hydrogen chemisorption on an Al surface: A critical first step for reversible hydrogen storage in NaAlH4. J. Phys. Chem. B 109, 6952 (2005)CrossRefGoogle Scholar
16.Fang, F., Zhang, J., Zhu, J., Chen, G., Sun, D., He, B., Wei, Z., Wei, S.Nature and role of Ti species in the hydrogenation of a NaH/Al mixture. J. Phys. Chem. C 111, 3476 (2007)CrossRefGoogle Scholar
17.Gutowska, A., Li, L., Shin, Y., Wang, C.M., Li, X.S., Linehan, J.C., Smith, R.S., Kay, B.D., Schmid, B., Shaw, W., Gutowski, M., Autrey, T.Nanoscaffold mediates hydrogen release and the reactivity of ammonia borane. Angew. Chem. Int. Ed. 44, 3578 (2005)CrossRefGoogle ScholarPubMed
18.Gross, A.F., Vajo, J.J., Van Atta, S.L., Olson, G.L.Enhanced hydrogen storage kinetics of LiBH4 in nanoporous carbon scaffolds. J. Phys. Chem. C 112, 5651 (2008)CrossRefGoogle Scholar
19.Züttel, A., Wenger, P., Rentsch, S., Sudan, P., Mauron, P., Emmenegger, C.LiBH4 a new hydrogen storage material. J. Power Sources 118, 1 (2008)CrossRefGoogle Scholar
20.Kostka, J., Lohstroh, W., Fichtner, M., Hahn, H.Diborane release from LiBH4/silica-gel mixtures and the effect of additives. J. Phys. Chem. C 111, 14026 (2007)CrossRefGoogle Scholar
21.Zheng, S., Fang, F., Zhou, G., Chen, G., Ouyang, L., Zhu, M., Sun, D.Hydrogen storage properties of space-confined NaAlH4 nanoparticles in ordered mesoporous silica. Chem. Mater. 20, 3954 (2008)CrossRefGoogle Scholar
22.Bhakta, R.K., Herberg, J.L., Jacobs, B., Highley, A., Behrens, R., Ockwig, N.W., Greathouse, J.A., Allendorf, M.D.Metal-organic frameworks as templates for nanoscale NaAlH4. J. Am. Chem. Soc. 131, 13198 (2009)CrossRefGoogle ScholarPubMed
23.Sun, D., Srinivasan, S.S., Kiyobayashi, T., Kuriyama, N., Jensen, C.M.Rehydrogenation of dehydrogenated NaAlH4 at low temperature and pressure. J. Phys. Chem. B 107, 10176 (2003)CrossRefGoogle Scholar
24.Zhang, H., Sun, J., Ma, D., Bao, X., Klein-Hoffmann, A., Weinberg, G., Su, D., Schlögl, R.Unusual mesoporous SBA-15 with parallel channels running along the short axis. J. Am. Chem. Soc. 126, 7440 (2004)CrossRefGoogle ScholarPubMed
25.Schüth, F.Non-siliceous mesostructured and mesoporous materials. Chem. Mater. 13, 3184 (2001)CrossRefGoogle Scholar
26.Kochrick, E., Krawiec, P., Schnelle, W., Geiger, D., Schappacher, F.M., Pöttgen, R., Kaskel, S.Space-confined formation of FePt nanoparticles in ordered mesoporous silica SBA-15. Adv. Mater. 19, 3021 (2007)CrossRefGoogle Scholar
27.Hsueh, H., Yang, C., Zink, J.I., Huang, M.H.Formation of titanium nitride nanoparticles within mesoporous silica SBA-15. J. Phys. Chem. B 109, 4404 (2005)CrossRefGoogle ScholarPubMed
28.Sun, D., Kiyobayashi, T., Takeshita, H.T., Kuriyama, N., Jensen, C.M.X-ray diffraction studies of titanium and zirconium doped NaAlH4: Elucidation of doping induced structural changes and their relationship to enhanced hydrogen storage properties. J. Alloys Compd. 337, L8 (2002)CrossRefGoogle Scholar
29.Claudy, P., Bonnetot, B., Chahine, G., Letoffe, J.M.Study of the thermal behavior of sodium tetrahydroaluminate and sodium hexahydroaluminate. Thermochim. Acta 38, 75 (1980)CrossRefGoogle Scholar
30.Dilts, J.A., Ashby, E.C.A study of the thermal decomposition of complex metal hydrides. Inorg. Chem. 11, 1230 (1972)CrossRefGoogle Scholar
31.Schüth, F., Bogdanović, B., Felderhoff, M.Light metal hydrides and complex hydrides for hydrogen storage. Chem. Commun. (Camb.) 20, 2249 (2004)CrossRefGoogle Scholar
32.Kissinger, H.E.Reaction kinetics in differential thermal analysis. Anal. Chem. 29, 1702 (1957)CrossRefGoogle Scholar
33.Santiso, E.E., George, A.M., Turner, C.H., Kpstov, M.K., Gubbins, K.E., Buongiorno-Nardelli, M., Sliwinska-Bartkowiak, M.Adsorption and catalysis: The effect of confinement on chemical reactions. Appl. Surf. Sci. 252, 766 (2005)CrossRefGoogle Scholar
34.Cento, C., Gislon, P., Bilgili, M., Masci, A., Zheng, Q., Prosini, P.P.How carbon affects hydrogen desorption in NaAlH4 and Ti-doped NaAlH4. J. Alloys Compd. 437, 360 (2007)CrossRefGoogle Scholar
35.Dehouche, Z., Lafi, L., Grimard, N., Goyette, J., Chahine, R.The catalytic effect of single-wall carbon nanotubes on the hydrogen sorption properties of sodium alanates. Nanotechnology 16, 402 (2005)CrossRefGoogle Scholar