Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T00:55:40.707Z Has data issue: false hasContentIssue false

Improved cycling stability of nanostructured electrode materials enabled by prelithiation

Published online by Cambridge University Press:  31 January 2011

Liqiang Mai*
Affiliation:
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070 China; and Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138
Yanhui Gu
Affiliation:
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070 China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

This review represents recent research on using chemical prelithiation to improve cycling performance of nanostructured electrode materials for lithium ion batteries in our group. We focus on two typical cathode materials, MoO3 nanobelts and FeSe2 nanoflowers. Methods of direct or secondary hydrothermal lithiation of MoO3 nanobelts and FeSe2 nanoflowers are described first, followed by electrochemical investigation of the samples before and after lithiation. Compared with pristine materials, lithiated samples exhibit better cycling capability. Prelithiation of other kinds of materials, such as V2O5, MnO2, etc. is also briefly reviewed. This demonstrates that prelithiation can be a powerful general approach for improving cycling performance of Li-ion battery electrode materials.

Type
Reviews
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Goodenough, J.B.Cathode materials: A personal perspective. J. Power Sources 174, 996 (2007)CrossRefGoogle Scholar
2.Miaomiao, M., Chernova, N.A., Toby, B.H., Zavalij, P.Y., Whittingham, M.S.Structural and electrochemical behavior of LiMn0.4Ni0.4Co0.2O2. J. Power Sources 165, 517 (2007)Google Scholar
3.Ji, X., Lee, K.T., Nazar, L.F.A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat. Mater. 8, 500 (2009)Google Scholar
4.Lee, Y., Kim, M.G., Cho, J.Layered Li0.88[Li0.18Co0.33Mn0.49]O2 nanowires for fast and high capacity Li-ion storage material. Nano Lett. 8, 957 (2008)CrossRefGoogle ScholarPubMed
5.Huang, X.H., Tu, J.P., Xia, X.H., Wang, X.L., Xiang, J.Y.Nickel foam-supported porous NiO/polyaniline film as anode for lithium ion batteries. Electrochem. Commun. 10, 1288 (2008)CrossRefGoogle Scholar
6.Doherty, C.M., Caruso, R.A., Smarsly, B.M., Adelhelm, P., Drummond, C.J.Hierarchically porous monolithic LiFePO4/carbon composite electrode materials for high power lithium ion batteries. Chem. Mater. 21, 5300 (2009)Google Scholar
7.Johnson, C.S., Dees, D.W., Mansuetto, M.F., Thackeray, M.M., Vissers, D.R., Argyriou, D., Loong, C.K., Christensen, L.Structural and electrochemical studies of a-manganese dioxide (a-MnO2). J. Power Sources 68, 570 (1997)CrossRefGoogle Scholar
8.Garcia, B., Millet, M., Pereira-Ramos, J.P., Baffier, N., Bloch, D.Electrochemical behavior of chemically lithiated LixV2O5 phases (0.99x91.6). J. Power Sources 68–82, 670 (1999)CrossRefGoogle Scholar
9.Landi, B.J., Ganter, M.J., Cress, C.D., DiLeo, R.A., Raffaelle, R.P.Carbon nanotubes for lithium ion batteries. Energy Environmen. Sci. 2, 638 (2009)Google Scholar
10.Zhang, Z., Yang, J., Nuli, Y., Wang, B., Xu, J.CoPx synthesis and lithiation by ball-milling for anode materials of lithium ion cells. Solid State Ionics 176, 693 (2005)Google Scholar
11.Seong, I.W., Kim, K.T., Yoon, W.Y.Electrochemical behavior of a lithium-pre-doped carbon-coated silicon monoxide anode cell. J. Power Sources 189, 511 (2009)Google Scholar
12.Mai, L.Q., Chen, W., Jiang, C.S., Xu, Q., Peng, J.F., Zhu, Q.Y.Effect of Mo doping and heat treatment on microstructure and electrochemical performance of vanadium oxide nanotubesContinuous Nanophase and Nanostructured Materials edited by S. Komarneni, J.C. Parker, and J.J. Watkins (Mater. Res. Soc. Symp. Proc 788, Warrendale, PA 2004)L11.36Google Scholar
13.Qi, Y.Y., Chen, W., Mai, L.Q., Zhu, Q.Y., Jin, A.P.Synthesis and electrochemical performance of PEO doped molybdenum trioxide nanobelts. Int. J. Electrochem. Sci. 1, 317 (2006)Google Scholar
14.Chen, W., Mai, L.Q., Qi, Y.Y., Dai, Y.One-dimensional nanomaterials of vanadium and molybdenum oxides. J. Phys. Chem. Solids 67, 896 (2006)Google Scholar
15.Chernova, N.A., Roppolo, M., Dillon, A.C., Whittingham, M.S.Layered vanadium and molybdenum oxides: Batteries and electrochromics. J. Mater. Chem. 19, 2526 (2009)CrossRefGoogle Scholar
16.Nazar, L.F., Koene, B.E., Britten, J.F.Hydrothermal synthesis and crystal structure of a novel layered vanadate with 1,4-diazabicyclo[2.2.2]octaneasthe structure-directing agent: (C6H14N2)V6O14·H2O. Chem. Mater. 8, 327 (1996)CrossRefGoogle Scholar
17.Whittingham, M.S.Lithium batteries and cathode materials. Chem. Rev. 104, 4271 (2004)CrossRefGoogle ScholarPubMed
18.Ban, C., Chernova, N.A., Whittingham, M.S.Electrospun nano-vanadium pentoxide cathode. Electrochem. Commun. 11, 522 (2009)Google Scholar
19.Mai, L.Q., Chen, W., Xu, Q., Zhu, Q.Y.Effect of modification by poly(ethylene-oxide) on the reversibility of Li insertion/extraction in MoO3 nanocomposite films. Microelectron. Eng. 66, 199 (2003)Google Scholar
20.Mai, L.Q., Chen, W., Xu, Q., Zhu, Q.Y.Mo doped vanadium oxide nanotubes: Microstructure and electrochemistry. Chem. Phys. Lett. 382, 307 (2003)Google Scholar
21.Mai, L.Q., Chen, W., Qi, Y.Y., Dai, Y., Jin, W.Synthesis and electrochemical performance of Ag-containing VONTs. Nanosci. Technol. 121, 789 (2007)Google Scholar
22.Chan, C.K., Peng, H., Liu, G., McIlwrath, K., Zhang, X.F., Huggins, R.A., Cui, Y.High performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3, 31 (2008)CrossRefGoogle ScholarPubMed
23.Hosono, E., Kudo, T., Honma, I., Matsuda, H., Zhou, H.Synthesis of single crystalline spinel LiMn2O4 nanowires for a lithium ion battery with high power density. Nano Lett. 9, 1045 (2009)CrossRefGoogle ScholarPubMed
24.Chan, C.K., Zhang, X.F., Cui, Y.High capacity Li ion battery anodes using Ge nanowires. Nano Lett. 8, 307 (2008)CrossRefGoogle ScholarPubMed
25.Mai, L.Q., Hu, B., Chen, W., Qi, Y.Y., Lao, C.S., Yang, R.S., Dai, Y., Wang, Z.L.Lithiated MoO3 nanobelts with greatly improved performance for lithium batteries. Adv. Mater. 19, 3712 (2007)Google Scholar
26.Mai, L.Q., Hu, B., Qi, Y.Y., Dai, Y., Chen, W.Improved cycling performance of directly lithiated MoO3 nanobelts. Int. J. Electrochem. Sci. 3, 216 (2008)Google Scholar
27.Mai, L.Q., Gao, Y., Guan, J.G., Hu, B., Xu, L., Jin, W.Formation and lithiation of ferroselite nanoflowers as high-energy Li-ion battery electrodes. Int. J. Electrochem. Sci. 4, 755 (2009)Google Scholar
28.Mai, L.Q., Lao, C.S., Hu, B., Zhou, J., Qi, Y.Y., Chen, W., Gu, E.D., Wang, Z.L.Synthesis and electrical transport of single-crystal NH4V3O8 nanobelts. J. Phys. Chem. B 110, 18138 (2006)Google Scholar
29.Mai, L.Q., Guo, W.L., Hu, B., Jin, W., Chen, W.Fabrication and properties of VO-based nanorods. J. Phys. Chem. C 112, 423 (2008)Google Scholar
30.Chen, W., Mai, L.Q., Qi, Y.Y., Jin, W., Hu, T., Guo, W.L., Dai, Y., Gu, E.D.One-dimensional oxide nanomaterials through rheological self-assembling. Key Eng. Mater. 336, 2128 (2007)Google Scholar
31.Zheng, L., Xu, Y., Jin, D., Xie, Y.Novel metastable hexagonal MoO3 nanobelts: Synthesis, photochromic, and electrochromic properties. Chem. Mater. 21, 5681 (2009)Google Scholar
32.Whittingham, M.S., Dines, M.B.N-Butyllithium—An effective, general cathode screening agent. J. Electrochem. Soc. 124, 1387 (1977)Google Scholar
33.Murphya, D.W., Greenblatt, M., Cava, R.J., Zahurak, S.M.Topotactic lithium reactions with ReO3 related shear structures. Solid State Ionics 5, 327 (1981)CrossRefGoogle Scholar
34.Wang, S.T., Zhang, Y.G., Ma, X.C., Wang, W.Z., Li, X.B., Zhang, Z.D., Qian, Y.T.Hydrothermal route to single crystalline a-MoO3 nanobelts and hierarchical structures. Solid State Commun. 136, 283 (2005)Google Scholar
35.Bullard, J.W., Smith, R.L.Structural evolution of the MoO3 (010) surface during lithium intercalation. Solid State Ionics 160, 335 (2003)Google Scholar
36.Chen, W., Qi, Y.Y., Mai, L.Q., Xu, Q., Liu, H.X., Zhao, X.J.Hydrothermal synthesis and electrochemical behavior of MoO3 nanobelts for lithium batteriesProceedings of the 10th Asian Conference on Solid State Ionics (World Scientific Publishing, Singapore 2006)833Google Scholar
37.Tsumura, T., Inagaki, M.Lithium insertion/extraction reaction on crystalline MoO3. Solid State Ionics 104, 183 (1997)CrossRefGoogle Scholar
38.Chan, C.K., Peng, H., Twesten, R.D., Jarausch, K., Zhang, X.F., Cui, Y.Fast, completely reversible Li insertion in vanadium pentoxide nanoribbons. Nano Lett. 7, 490 (2007)CrossRefGoogle ScholarPubMed
39.Lee, K.T., Kan, W.H., Nazar, L.F.Proof of intercrystallite ionic transport in LiMPO4 electrodes (M = Fe, Mn). J. Am. Chem. Soc. 131, 6044 (2009)Google Scholar
40.Christian, P.A., Carides, J.N., DiSalvo, F.J., Waszczak, J.V.Molybdenum oxide cathodes in secondary lithium cells. J. Electrochem. Soc. 127, 2315 (1980)Google Scholar
41.Huang, Y.H., Goodenough, J.B.High-rate LiFePO4 lithium rechargeable battery promoted by electrochemically active polymers. Chem. Mater. 20, 7237 (2008)CrossRefGoogle Scholar
42.Padhi, A.K., Nanjundaswamy, K.S., Goodenough, J.B.Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 144, 1188 (1997)CrossRefGoogle Scholar
43.Chen, J., Vacchio, M.J., Wang, S., Chernova, N., Zavalij, P.Y., Whittingham, M.S.The hydrothermal synthesis and characterization of olivines and related compounds for electrochemical applications. Solid State Ionics 178, 1676 (2008)Google Scholar
44.Li, L., Pistoia, G.Secondary Li cells. I. A comparison of the behavior of cathodes based on pure and lithiated manganese oxides. Solid State Ionics 47, 231 (1991)Google Scholar
45.Li, L., Pistoia, G.Secondary Li cells. II. Characteristics of lithiated manganese oxides synthesized from LiNO3 and MnO2. Solid State Ionics 47, 241 (1991)Google Scholar
46.Jung, W.I., Nagao, M., Pitteloud, C., Yamada, A., Kann, R.Synthesis of LixMnO2 by chemical lithiation in an aqueous media. J. Power Sources 195, 3328 (2010)CrossRefGoogle Scholar