Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T07:07:44.833Z Has data issue: false hasContentIssue false

Imprint and Fatigue Properties of Chemical Solution Derived Pb1–-xLax(ZryTi1–y)1–x/4O3 Thin Films

Published online by Cambridge University Press:  31 January 2011

Seung-Hyun Kim
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695
Dong-Joo Kim
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695
JoonGoo Hong
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695
S. K. Streiffer
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695
A. I. Kingon
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695
Get access

Abstract

We have investigated the effect of oxygen vacancies on imprint and fatigue behavior of the PLZT thin films. It is found that the compensation of oxygen vacancies with various dopant concentrations and electrode structures is an important process parameter in determining the tendency to imprint and fatigue. In the case of PLZT thin films, the voltage shifts related to imprint are attributed to the trapping of electrons at ionic defect sites such as oxygen vacancies near the film/electrode interface, the magnitude of polarization, and concentration of defect-dipole complexes involving oxygen vacancies such as V′Pb–V••o. The strong dependence of fatigue rate on electrode material for PLZT thin films is due to the effect of the ferroelectric/electrode interaction on the pinning and/or unpinning rate involving the accumulation of oxygen vacancies near the film/electrode interface during fatigue cycling. By using RuO2 as the top and/or bottom electrode instead of Pt, improved fatigue properties are obtained compared to Pt/PLZT/Pt capacitors. This is because a reduced accumulation of oxygen vacancies near the interface by the oxide electrode such as RuO2 may reduce the electronic charge trapping and, consequently, lead to less domain wall pinning.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Adachi, H., Mitsuyu, T., Yamajaki, O., and Wasa, K., J. Appl. Phys. 60, 736 (1986).CrossRefGoogle Scholar
2.Scott, J. F. and Araujo, C. A., Science 246, 1400 (1989).CrossRefGoogle Scholar
3.Chen, J., Udayakumar, K. R., Brooks, K. G., and Cross, L. E., J. Appl. Phys. 71, 4465 (1992).CrossRefGoogle Scholar
4.Frazier, A. B., Warrington, R. O., and Fredrich, C., IEEE Trans. Ind. Electron. 42, 423 (1995).CrossRefGoogle Scholar
5.Polla, D. L., Microelectronic Engin. 29, 51 (1995).CrossRefGoogle Scholar
6.Scott, J. F., Paz de Araujo, C. A., and McMillan, L. D., Condensed News 1, 16 (1992).Google Scholar
7.Scott, J. F., Phys. World, 46 (Feb. 1995).CrossRefGoogle Scholar
8.Mihara, T., Watanabe, H., and Yoshimori, H., Nikkei Electron. 581, 94 (1993).Google Scholar
9.Yoo, I. K., Desu, S.B., and Xing, J., in Ferroelectric Thin Films III, edited by Tuttle, B. A., Myers, E. R., Desu, S. B., and Larsen, P. K. (Mater. Res. Soc. Symp. Proc. 310, Pittsburgh, PA, 1993), p. 165.Google Scholar
10.Pan, W. Y., Yue, C. F., and Tuttle, B. A., Ceram. Trans. 25, 385 (1992).Google Scholar
11.Warren, W.L., Dimos, D., Pike, G.E., Tuttle, B.A., Raymond, M.V., Ramesh, R., and Evans, J. T. Jr, Appl. Phys. Lett. 67, 866 (1995).Google Scholar
12.Lee, J., Ramesh, R., Keramidas, V. G., Warren, W. L., Pike, G. E., and Evans, J. T. Jr, Appl. Phys. Lett. 66, 1337 (1995).Google Scholar
13.Pan, W. Y., Yue, C. F., and Tuttle, B. A., Ceram. Trans. 25, 385 (1992).Google Scholar
14.Yoo, I. K. and Desu, S. B., in Ferroelectric Thin Films II, edited by Kingon, A. I., Myers, E. R., and Tuttle, B. (Mater. Res. Soc. Symp. Proc. 243, Pittsburgh, PA, 1992), p. 323.Google Scholar
15.Lambeck, P. V. and Jonker, G. H., Ferroelectrics 22, 729 (1978).CrossRefGoogle Scholar
16.Warren, W.L., Dimos, D., and Waser, R.W., MRS Bulletin 21 (7), 40 (1996).Google Scholar
17.Schwartz, R. W., Boyle, T. J., Lockwood, S. J., Sinclair, M. B., Dimos, D., and Buchheit, C. D., Int. Ferroelectrics 7, 259 (1995).CrossRefGoogle Scholar
18.Yi, G., Wu, Z., and Sayer, M., J. Appl. Phys. 64 (5), 2717 (1988).CrossRefGoogle Scholar
19.Kim, S. H., Choi, Y. S., Kim, C. E., and Oh, Y. J., J. Mater. Res. 12, 1576 (1997).CrossRefGoogle Scholar
20.Kim, S. H., Hong, J.G., Gunter, J. C., Streiffer, S.K., and Kingon, A. I., in Ferroelectric Thin Films VI, edited by Treece, R. E., Jones, R. E., Desu, S. B., Foster, C. M., and Yoo, I. K. (Mater. Res. Soc. Symp. Proc. 493, Warrendale, PA, 1998), p. 131.Google Scholar
21.Willems, G. J., Wouters, D. J., Maes, H. E., and Nouwen, R., Integrated Ferroelectrics 15, 19 (1997).CrossRefGoogle Scholar
22.Chang, J. F. and Desu, S. B., J. Mater. Res. 9, 955 (1994).Google Scholar
23.Shannon, R. D. and Prewitt, C. T., Acta Crystallogr. 25, 925 (1969).Google Scholar
24.Al-Shareef, H. N., Dimos, D., Warren, W. L., and Tuttle, B. A., J. Appl. Phys. 80 (8), 4573 (1996).Google Scholar
25.Warren, W.L., Tuttle, B.A., Dimos, D., Pike, G.E., Al-Shareef, H.N., Ramesh, R., and Evans, J. T. Jr, Jpn. J. Appl. Phys. 35, 1521 (1996).CrossRefGoogle Scholar