Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-07T16:47:39.480Z Has data issue: false hasContentIssue false

Hydroxyapatite-alginate composite for lead removal in artificial gastric fluid

Published online by Cambridge University Press:  31 January 2011

Elena Mavropoulos*
Affiliation:
Centro Brasileiro de Pesquisas Físicas, Centro Brasileiro de Pesquisas Físicas, Física Aplicada, Rio de Janeiro 22290-18, Brazil
Maria Helena Rocha-Leão
Affiliation:
Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
Nilce C.C. da Rocha
Affiliation:
Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
Marcelo H. Prado da Silva
Affiliation:
Instituto Militar de Engenharia, Rio de Janeiro, Brazil
Alexandre Malta Rossi
Affiliation:
Centro Brasileiro de Pesquisas Físicas: Centro Brasileiro de Pesquisas Físicas, Física Aplicada, Rio de Janeiro 22290-18, Brazil
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Millimetric spherical beads of a biocompatible composite were produced from sodium alginate, a natural polysaccharide, and nanostructured hydroxyapatite (HA). It was shown that the composite was effective in the removal of lead ions and lead phosphate nanoparticles from high-contaminated simulated gastric fluid. X-ray diffraction spectroscopy and scanning electron microscopy analyses performed on HA–alginate beads after the Pb2+ uptake showed that nanocrystals of a lead phosphate, [Pb10–xCax(PO4)6Cl2], were precipitated on the bead surface. The cross-linked polymer chain had a double role: (i) keep Pb2+ ions and lead phosphate nanoparticles bounded to the bead surface, preventing their bioavailability in stomach fluid; and (ii) delay HA dissolution in the acidic conditions of the stomach, assuring that an excess of Ca2+ will not be released to simulated gastric fluid. Desorption experiments in simulated enteric fluid revealed that lead remained immobilized in the calcium phosphate phase in the intestinal tract. These results indicate HA–alginate composite as a potential system for heavy metals removal from contaminated gastric and enteric human fluids, minimizing its adsorption by the human body.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

2Deydier, E., Guilet, R.Sharrock, P.: Beneficial use of meat and bone meal combustion residue: An efficient low cost material to remove lead from aqueous effluent. J. Hazard. Mater. B 101, 55 2003CrossRefGoogle ScholarPubMed
3Levy, G.Rao, K.: Enhanced intestinal absorption of riboflavin from sodium alginate solution in man. J. Pharm. Sci. 61, 279 1972CrossRefGoogle ScholarPubMed
4Park, D.J., Choi, B.H., Zhuh, S.J., Huh, J.Y., Kim, B.Y.Lee, S.H.: Injectable bone using chitosan-alginate gel/mesenchymal stem cells/BMP-2 composites. J. Craniomaxillofac. Surg. 33, 50 2005CrossRefGoogle ScholarPubMed
5Barrias, C.C., Ribeiro, C.C., Lamghari, M., Miranda, C.S.Barbosa, M.A.: Proliferation, activity, and osteogenic differentiation of bone marrow stromal cells cultured on calcium titanium phosphate microspheres. J. Biomed. Mater. Res. A 72(1), 57 2005Google Scholar
6Krylova, E., Ivanov, A., Orlovsk, V., El-Registan, G.Barinov, S.: Hydroxyapatite-polysaccharide granules for drug delivery. J. Mater. Sci.: Mater. Med. 13, 87 2002Google ScholarPubMed
7Buranapanitkit, B., Oungbho, K.Ingviya, N.: The efficacy of hydroxyapatite composite impregnated with amphotericin B. Clin. Orthop. Relat. Res. 437, 236 2005CrossRefGoogle Scholar
8Gotoh, T., Matsushima, K.Kikuchi, K.I.: Adsorption of Cu and Mn on covalently cross-liked alginate gel beads. Chemosphere 55, 57 2004CrossRefGoogle Scholar
9Mavropoulos, E., Rossi, A.M., Costa, A.M., Perez, C.A.C.Moreira, J.C.: Studies on the mechanisms of lead immobilization by hydroxyapatite. Environ. Sci. Technol. 36, 1625 2002CrossRefGoogle ScholarPubMed
10Rocha, N.C.C., Campos, R.C., Rossi, A.M., Moreira, E.L., Barbosa, A.F.Moure, G.T.: Cadmium uptake by hydroxyapatite synthesized in different conditions and submitted to thermal treatment. Environ. Sci. Technol. 36, 1630 2002CrossRefGoogle ScholarPubMed
11Arnich, N., Lanhers, M.C., Laurensot, F., Podor, R., Montiel, A.Burnel, D.: In vitro and in vivo studies of lead immobilization by synthetic hydroxyapatite. Environ. Pollut. 124, 139 2003CrossRefGoogle ScholarPubMed
12Hayek, E.Newesely, H.: Pentacalcium monohydroxyorthophosphate. Inorg. Synth. 7, 63 1963CrossRefGoogle Scholar
13Finotelli, P.V., Morales, M.A., Rocha-Leão, M.H., Baggio-Saitovitch, E.M.Rossi, A.M.: Magnetic studies of iron (III) nanoparticles in alginate polymer for drug delivery applications. Mater. Sci. Eng., C 24, 625 2004CrossRefGoogle Scholar
14Nriagu, J.O.: Lead orthophosphates II: Stability of cloropyromorphite at 25 °C. Geochim. Cosmochim. Acta 37, 367 1973CrossRefGoogle Scholar
15Ma, Q.Y., Traina, S.J., Logan, T.J.Ryan, J.A.: In situ lead immobilization by apatite. Environ. Sci. Technol. 27, 1803 1993CrossRefGoogle Scholar
16Mavropoulos, E., Rocha, N.C.C., Moreira, J.C., Rossi, A.M.Soares, G.A.: Characterization of phase evolution during lead immobilization by synthetic hydroxyapatite. Mater. Charact. 53, 71 2004CrossRefGoogle Scholar
17Llanes, F., Ryan, D.H.Marchessault, R.H.: Magnetic nanostructured composites using alginates of different M:G ratios as polymeric matrix. Int. J. Biol. Macromol. 27, 35 2000CrossRefGoogle ScholarPubMed