Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T01:46:56.419Z Has data issue: false hasContentIssue false

Hydrothermally grown BaZrO3 films on zirconium metal: Microstructure, x-ray photoelectron spectroscopy, and Auger electron spectroscopy depth profiling

Published online by Cambridge University Press:  03 March 2011

V.M. Fuenzalida
Affiliation:
Universidad de Chile FCFM, Departamento de Física, Casilla 487–3, Santiago, Chile
M.E. Pilleux*
Affiliation:
Universidad de Chile FCFM, Departamento de Física, Casilla 487–3, Santiago, Chile
*
a)Present address: Kenbourne Ingeniería Ambiental S.A., Barros Errazuriz 1960, Santiago, Chile.
Get access

Abstract

BaZrO3 films were grown on zirconium metal substrates by immersing thin Zr foils in an alkaline solution under hydrothermal conditions. The films were produced at temperatures ranging from 200 °C to 270 °C in a 0.25 M barium hydroxide solution for 3 to 8 h. The resulting films did not have visible pores or defects, and displayed a grain structure which depended on the treatment conditions, especially temperature. X-ray photoelectron and Auger spectroscopies revealed that (a) after removing the surface layer, films were clean, not displaying OH groups nor carbon contamination; (b) the Ba concentration steadily decreased as the depth increased, and did not behave as in BaTiO3 or SrTiO3 films prepared under similar conditions; and (c) the BaZrO3/Zr interface was very broad. Grazing angle x-ray diffraction analysis showed BaZrO3 (cubic), ZrO2 (hexagonal), and Zr (hexagonal), suggesting a layered structure: BaZrO3/ZrO2/Zr. The relative dielectric constant was ≍70 and was independent of the frequency between 100 Hz and 1 MHz. The dielectric loss factor (tan δ) was between 0.01 and 0.02. Dielectric breakdown occurred between 25 and 40 MVm−1.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Yoo, S. E., Ishizawa, N., Hayashi, M. and Yoshimura, M., Report of the Research Laboratory of Engineering Materials, Tokyo Institute of Technology 16, 3953 (1991).Google Scholar
2Bacsa, R., Ravindranathan, P., and Dougherty, J. P., J. Mater. Res. 7, 423 (1992).CrossRefGoogle Scholar
3Pilleux, M.E., Grahmann, C. R., Fuenzalida, V.M., and Avila, R., Appl. Surf. Sci. 65/66, 283 (1993).Google Scholar
4Yoo, S. E., Hayashi, M., Ishizawa, N., and Yoshimura, M., J. Am. Ceram. Soc. 73 (8), 25612563 (1990).CrossRefGoogle Scholar
5Pilleux, M.E., Grahmann, C.R., and Fuenzalida, V.M., J. Am. Ceram. Soc. 77 (6), 16011604 (1994).CrossRefGoogle Scholar
6Ishizawa, N., Banno, H., Hayashi, M., Yoo, S. E., and Yoshimura, M., Jpn. J. Appl. Phys. 11, 29 (1990).Google Scholar
7Hayashi, M., Ishizawa, N., Yoo, S. E., and Yoshimura, M., J. Ceram. Soc. Jpn. 98 (8), 930933 (1990).CrossRefGoogle Scholar
8Bacsa, R. R., Dougherty, J. P., and Pilione, L. J., Appl. Phys. Lett. 63 (8), 10531055 (1993).CrossRefGoogle Scholar
9Pilleux, M. E. and Fuenzalida, V. M., J. Appl. Phys. 74, 46644671 (1993).CrossRefGoogle Scholar
10Pilleux, M. E. and Fuenzalida, V. M., in Ferroelectric Thin Films III, edited by Tuttle, B.A., Myers, E. R., Desu, S.B., and Larsen, P. K. (Mater. Res. Soc. Symp. Proc. 310, Pittsburgh, PA, 193), pp. 333338.Google Scholar
11Nogami, G., Mamyama, H., and Hongo, K., J. Electrochem. Soc. 140 (8), 23702373 (1993).CrossRefGoogle Scholar
12Kajiyoshi, K., Ishizawa, N., and Yoshimura, M., J. Am. Ceram. Soc. 74 (2), 369374 (1991).CrossRefGoogle Scholar
13Kajiyoshi, K., Ishizawa, N., and Yoshimura, M., Jpn. J. Appl. Phys. 30, L120L123 (1991).CrossRefGoogle Scholar
14Demianets, L. M. and Lobachev, A. N., in Current Topics in Materials Science, edited by Kaldis, E. (North-Holland, Amsterdam, 1982), Vol. 7, pp. 485586.Google Scholar
15Kutty, T.R.N., Vivekanandan, R., and Philip, S., J. Mater. Sci. 25, 3649 (1990).CrossRefGoogle Scholar
16Yoshimura, M., Yoo, S.E., Hayashi, M., and Ishizawa, N., Jpn. J. Appl. Phys. 28 (11), L20072009 (1989).CrossRefGoogle Scholar
17Ishizawa, N., Hayashi, M., Banno, H., Mizunuma, S., Yamagutchi, H., Yoo, S-E., and Yoshimura, M., Report of the Research Laboratory of Engineering Materials, Tokyo Institute of Technology 16, 914 (1991).Google Scholar
18Bendale, P., Venigalla, S., Ambrose, J. R., Verink, E. D. Jr., and Adair, J.H., J. Am. Ceram. Soc. 76 (10), 26192627 (1993).CrossRefGoogle Scholar
19Lastman, B. and Keres, F. Jr., The Metallurgy of Zirconium (McGraw-Hill, New York, 1955), pp. 608625, 635640.Google Scholar
20Herbert, J. M., Ceramic Dielectrics and Capacitors (Gordon and Breach, Philadelphia, PA, 1992), pp. 156 and 226.Google Scholar
21Neirman, S.F., J. Mater. Sci. 23, 3973 (1988).Google Scholar
22Stenstrop, G. and Engell, J., J. Less-Comm. Met. 164/165, 200 (1990).Google Scholar
23Rao, Y. S. and Sunandana, C. S., J. Mater. Sci. Lett. 10, 927 (1991).Google Scholar
24Branson, D.L., J. Am. Ceram. Soc. 48, 441 (1965).CrossRefGoogle Scholar
25Galasso, F. S., Structure, Properties, and Preparation of Perovskite-Type Compounds (Pergamon Press, Oxford, 1967), pp. 38, 145146.Google Scholar
26Wen, T. L., Hebert, V., Vilmino, S., and Bernier, J. C., J. Mater. Sci. 26, 3787 (1991).CrossRefGoogle Scholar
27Handbook of X-ray Photoelectron Spectroscopy, edited by Chastain, J. (Perkin-Elmer Corporation, Eden Prairie, MN, 1992).Google Scholar
28Yoshimura, M., Hydrothermal Reactions for Materials Science and Engineering, edited by Sōmiya, S. (Elsevier, London and New York, 1989), p. 390.Google Scholar