Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-08T09:15:41.913Z Has data issue: false hasContentIssue false

Hydrothermal synthesis and characterization of the eulytite phase of bismuth germanium oxide powders

Published online by Cambridge University Press:  16 May 2014

Timothy J. Boyle*
Affiliation:
Sandia National Laboratories, Advanced Materials Laboratory, Albuquerque, New Mexico 87106
Eric Sivonxay
Affiliation:
Sandia National Laboratories, Advanced Materials Laboratory, Albuquerque, New Mexico 87106
Pin Yang
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185-0958
Mark A. Rodriguez
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185-1411
Bernadette A. Hernandez-Sanchez
Affiliation:
Sandia National Laboratories, Advanced Materials Laboratory, Albuquerque, New Mexico 87106
Nelson S. Bell
Affiliation:
Sandia National Laboratories, Advanced Materials Laboratory, Albuquerque, New Mexico 87106
Andrew Velazquez
Affiliation:
Sandia National Laboratories, Advanced Materials Laboratory, Albuquerque, New Mexico 87106
Bryan Kaehr
Affiliation:
Sandia National Laboratories, Advanced Materials Laboratory, Albuquerque, New Mexico 87106
Marlene Bencomo
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185-0958
James J.M. Griego
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185-1411
Patrick Doty
Affiliation:
Sandia National Laboratories, Livermore, California 94551-0969
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

A simple hydrothermal route to the eulytite phase of bismuth germanium oxide (E-BGO: Bi4(GeO4)3) that required no post-processing has been developed. The E-BGO material was isolated from a mixture of bismuth nitrate pentahydrate and a slight excess of germanium oxide in water under hydrothermal conditions (185 °C for 24 h). The resultant materials were characterized by powder x-ray diffraction, scanning electron microscopy, transmission electron microscopy, and luminescence measurements to verify the particle's phase (eulytite), morphology, size, and response to a variety of excitation energy sources, respectively. Photoluminescence spectroscopic response from E-BGO pellets indicated that the samples exhibited a strong emission peak consistent with an x-ray induced luminescence of a E-BGO single crystal (500 nm excited at 285 nm). Cathodoluminescent properties of the E-BGO displayed a broadband spectrum with a maximum at 487 nm. The growth process was consistent with a standard Oswald ripening and LaMer growth processes.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Yen, W.M., Shionoya, S., and Yamamoto, H.: Phosphor Handbook, 2nd ed. (CRC Press, Taylor & Francis Group, Boca Raton, FL, 2007).Google Scholar
Dieguez, E., Arizmendi, L., and Cabrera, J.M.: X-ray induced luminescence, photoluminescence and thermoluminescence of Bi4Ge3O12 . J. Phys. C: Solid State Phys. 18, 4777 (1985).Google Scholar
Saint-Gobain Ceramics & Plastics, Inc.: BGO, Bismuth germanate scintillation material, http://www.detectors.saint-gobain.com/Default.aspx (2013).Google Scholar
van Eijk, C.W.E.: Inorganic-scintillator development. Nucl. Instrum. Methods Phys. Res., A 460, 1 (2001).CrossRefGoogle Scholar
Santana, G.C., de Mello, A.C.S., Valerio, M.E.G., and Macedo, Z.S.: Scintillating properties of pure and doped BGO ceramics. J. Mater. Sci. 42, 2231 (2007).Google Scholar
Zyryanov, V.V., Smirnov, V.I., and Ivanovskaya, M.I.: Mechanochemical synthesis of crystalline compounds in the Bi2O3–GeO2 system. Inorg. Mater. 41, 711 (2005).Google Scholar
Shimanskii, A.F. and Vasil'eva, M.N.: Nonstoichiometry and sintering of bismuth-germanium binary oxides in the presence of liquid phase. Refract. Ind. Ceram. 42, 20 (2001).Google Scholar
Kisteneva, M.G., Akrestina, A.S., Shandarov, S.M., Mandel, A.E., Grebenchukov, A.N., Pozdeeva, E.V., and Kargin, Y.F.: Spectral dependences of the optical absorption in bismuth germanium oxide crystals annealed in vacuum. Russ. Phys. J. 55, 444 (2012).Google Scholar
Novoselov, I.I., Makarov, I.V., Fedotov, V.A., Ivannikova, N.V., and Shubin, Y.V.: Synthesis of a bismuth germanium oxide source material for Bi4Ge3O12 crystal growth. Inorg. Chem. 49, 412 (2013).Google Scholar
Ishii, M. and Kobayashi, M.: Single-crystals for radiation detectors. Prog. Cryst. Growth Charact. 23, 245 (1991).Google Scholar
Borowiec, M.T., Majchrowski, A., Zmija, J., Szymczak, H., Zayarniuk, T., Michalski, E., and Baranski, M.: Crystal growth and optical properties of iron sillenite Bi25FeO40 . In Proceedings of SPIE, Vol. 5136, 26 (2003).Google Scholar
Macedo, Z.S. and Hernandes, A.C.: Laser sintering of bismuth germanate (Bi4Ge3O12) ceramics. J. Am. Ceram. Soc. 85, 1870 (2002).CrossRefGoogle Scholar
Tseng, T-K.: Luminescent oxide nanocomposite: Synthesis, characterization, and scintillation application. Thesis, Department of Materials Science and Engineering, University of Florida, 2010. Google Scholar
Kozhbakhteeva, D.E. and Leonyuk, N.I.: Hydrothermal synthesis and morphology of eulytite-like single crystals. J. Optoelectr. Adv. Mater. 5, 621 (2003).Google Scholar
Polosan, S., Matei, E., and Logofatu, C.: Synthesis of Eu-doped bismuth germanate nano-ceramic powder. Optoelectron. Adv. Mater., Rapid Commun. 4, 1503 (2010).Google Scholar
PDF4+ 2013 database. International Centre for Diffraction Data, Newtown Square, PA. Google Scholar
Chen, R., Bi, J., Wu, L., Li, Z., and Fu, X.: Orthorhombic Bi2GeO5 nanobelts: Synthesis, characterization, and photocatalytic properties. Cryst. Growth Des. 9, 1775 (2009).Google Scholar
Tuac, J.: Optical properties and electronic structure of amorphous Ge and Si. J. Mater. Res. Bull. 3, 37 (1968).Google Scholar
Bordun, O.M.: Photoluminescence of Bi4Ge3O12 thin films and ceramics. J. Appl. Spectrosc. 63, 97 (1996).Google Scholar
Katoh, N., Yasuda, K., Shiga, T., Hasegawa, M., Onimaru, R., Shimizu, S., Bengua, G., Ishikawa, M., Tamaki, N., and Shirato, H.: A new brain positron emission tomography scanner with semiconductor detectors for target volume delineation and radiotherapy treatment planning in patients with nasopharyngeal carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 82, e671 (2012).Google Scholar
Tauc, J., Grigorov, R., and Vancu, A.: Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi 15, 627 (1966).Google Scholar
Polosan, S., Galca, A.C., and Secu, M.: Band-gap correlations in Bi4Ge3O12 amorphous and glass-ceramic materials. Solid State Sci. 13, 49 (2011).CrossRefGoogle Scholar
Bernstein, R.B. and Cubicciotti, D.: The kinetics of the reaction of germanium and oxygen. J. Am. Chem. Soc. 73, 4112 (1951).Google Scholar
Jiang, X., Su, L., Yu, P., Guo, X., Tang, H., Xu, X., Zheng, L., Li, H., and Xu, J.: Broadband photoluminescence of Bi2O3-GeO2 binary systems: Glass, glass-ceramics and crystals. Laser Phys. 23, 105812 (2013).Google Scholar
Henry, N., Evain, M., Deniard, P., Jobic, S., Abraham, F., and Mentre, O.: [Bi2O2]2+ layers in Bi2O2(OH)(NO3): Synthesis and structure determination. Z. Naturforsch. 60b, 322 (2005).CrossRefGoogle Scholar
Pokrovski, G.S., Martin, F., Hazemann, J-L., and Schott, J.: An x-ray absorption fine structure spectroscopy study of germanium-organic ligand complexes in aqueous solution. Chem. Geol. 163, 151 (2000).Google Scholar
Tooth, B., Etschmann, B., Pokrovsi, G.S., Testemale, D., Hazemann, J-L., Grundler, P.V., and Brugger, J.: Bismuth speciation in hydrothermal fluids: An x-ray absorption spectroscopy and solubility study. Geochim. Cosmochim. Acta 101, 156 (2013).CrossRefGoogle Scholar
Ranieri, V., Haines, J., Cambon, O., Levelut, C., Le Parc, R., Cambon, M., and Hazemann, J-L.: In situ x-ray absorption spectroscopy study of Si1−x Ge x O2 dissolution and germanium aqueous speciation under hydrothermal conditions. Inorg. Chem. 51, 414 (2012).Google Scholar
Pokrovski, G.S. and Schott, J.: Thermodynamic properties of aqueous Ge(IV) hydroxide complexes from 25 to 350 °C: Implications for the behavior of germanium and the Ge/Si ratio in hydrothermal fluids. Geochim. Cosmochim. Acta 62, 1631 (1998).Google Scholar
Supplementary material: File

Boyle Supplementary Material

Figures S1 and S2

Download Boyle Supplementary Material(File)
File 376.3 KB